Abstract:
Depth-image-based rendering (DIBR) is used to generate additional views of a real-world scene from images or videos and associated per-pixel depth information. An inheren...Show MoreMetadata
Abstract:
Depth-image-based rendering (DIBR) is used to generate additional views of a real-world scene from images or videos and associated per-pixel depth information. An inherent problem of the view synthesis concept is the fact that image information which is occluded in the original view may become visible in the “virtual” image. The resulting question is: how can these disocclusions be covered in a visually plausible manner? In this paper, a new temporally and spatially consistent hole filling method for DIBR is presented. In a first step, disocclusions in the depth map are filled. Then, a background sprite is generated and updated with every frame using the original and synthesized information from previous frames to achieve temporally consistent results. Next, small holes resulting from depth estimation inaccuracies are closed in the textured image, using methods that are based on solving Laplace equations. The residual disoccluded areas are coarsely initialized and subsequently refined by patch-based texture synthesis. Experimental results are presented, highlighting that gains in objective and visual quality can be achieved in comparison to the latest MPEG view synthesis reference software (VSRS).
Published in: 2010 IEEE International Conference on Image Processing
Date of Conference: 26-29 September 2010
Date Added to IEEE Xplore: 03 December 2010
ISBN Information: