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ABSTRACT the valued on C' and+-oo onH ~ C. A fundamental tool for
We consider a variational formulation of blind image recov-the derivation of the algorithms in this paper is the proxymi

ery problems. A novel iterative proximal algorithm is pro- OPerator of afunctiorf € I'o(#), which is defined as
posed to solve the associated nonconvex minimization prob- 1

lem. Under suitable assumptions, this algorithm is shown to  prox;:H — H: x + argmin f(y) + 5Hx —yl? @)
have better convergence properties than standard altagnat yeH

minimization techniques. The objective function includes For background on proximity operators and their use in digna

%nd image processing problems, the reader is referred to [6,

ularization terms modeling prior information on the datd an 7]. Subsequently, two Hilbert spaces will be of interese th

on the unknown linear degradation operator. A novelty Ofourstandard Euclidean spad&” andRY N the space of real

approach is to_bring into play recent nonsmoo_th _analysis 'Salued matrices of siz&/ x N endowed with the Frobenius
sults. The pertinence of the proposed method is illustrited norm. For notational conciseness, the norms of both spaces

an image restoration example. will be denoted by - ||
Index Terms— Blind restoration, blind reconstruction, In Section 2, the blind data recovery problem under con-
proximal methods, nonlinear optimization, wavelets sideration is formulated. In Section 3, we emphasize some
of the limitations of basic alternating minimization schesn
1. INTRODUCTION The new proximal optimization method is introduced in Sec-

tion 4. Finally, in Section 5, we apply the proposed alganith
Blind restoration and reconstruction are challenging fgois o a blind image deconvolution problem.
in image processing [3, 4, 9]. Variational approaches tedghe
problems are often based on alternating minimizationestrat 2 PROBLEM
gies which, in spite of their practical usefulness, offegan-
eral few theoretical guarantees of convergence. In this P consider the standard linear observation model
per, we propose a novel proximal alternating minimization
algorithm for which stronger convergence results can be es- =TT+ w, 2)
tablished, under wide assumptions. In recent years, proxi-
mal methods have become increasingly popular for solvingvherez € RM is the observed datd, € RM*N models to
inverse problems in image processing [6] due to their gbilit the linear measurement processe RY is the target data
to tackle minimization problems involving sums of possibly andw € RY is some noise perturbation. Our objective is to
nonsmooth functions, such as those arising in the preseénce @coverz from z, without knowledge of.. Such a problem
hard or sparsity promoting constraints. However, most ef th arises in many blind data recovery problems in deconvaiytio
existing work on proximal methods has focused on data resource separation or reconstruction. An estimatelofr) is

covery problems based on a model involving a linear operatasbtained by solving the following optimization problem.
assumed to be known a priori.

Throughout the paper, we use the following nOtation'Problem 2.1Set®: (z,L) — f(z) + g(L) + h(z — Lx)
Io(H) denotes the class of lower semicontinuous conveynerer,. RM —; R is a differentiable convex function which
functions from a rgal !—hlbert s.paCH.to ,]_OO’ +°O]', AN hasa Lipschitz continuous gradient over every bounded sub-
example of a function if'y(*) is the indicator function: setsoRM, f € [o(RN), andg € To(RM*N). The objective
of a nonempty closed convex subgébf #, which takes on is to ' ’

This work was supported by the Agence Nationale de la Rebbensder minimize  ®(x, L). 3)
grants ANR-08-BLAN-0294-02 and ANR-09-EMER-004-03. Tz€RN, LERMXN

Proceedings of the IEEE International Conference on Image Processing. Hong-Kong, September 26-29, 2010



For example, in a Bayesian framework, a solution to Probeonvergence of alternating minimization procedures caa al
lem 3 is a Maximum A Posteriori estimate @f, 7) if one as-  be observed with convex objectives). In the present condext
sumes thatv is a realization of a random vector with probabil- simple counterexample is the following.
ity density functionx exp(—h(+)), L is a realization of a ran-
dom matrix with probability density functios exp(—g(-)),  Example 3.2 Assume thafV = M and set

T is a realization of a random vector with probability den- 1
sity  exp(—f(-)), and the three latter random variables are f=uw,g=l"lli+ew, and h=_] ()
jointly independent. )

Often, f and g can be decomposed as sums of sim-WhereC' = [—1,1] and whereD is the vector subspace of

pler functions, sayf = S.7_, f; andg = °_, g;, where ~ diagonal matrices oRN*N_If we suppose that € C and
=1 ]: L]
(f:)1<i<p are functions iy (RY), and(g;)1< <, are func- initialize Algorithm 3.1 withL, = 0, a resulting sequence of

tions in['o(RM*N). Problem (3) then becomes iterates is given by
(VEeN)  xp=(=1*1,...,1]", L, =0. (8)

2ERN | LERM XN Hence,(zx)ren does not converge.

p
minimize Z filz) + Z g;i(L) 4+ h(z — Lx). (4)
i=1

Because of the coupling terfw, L) ~— h(z — Lx), the ob- 4. PROPOSED OPTIMIZATION METHOD
jective function is in general not convex. In the supervised

case wherL (respectivelyz) is known a natural choice isto  As an alternative to Algorithm 3.1, we propose to use the fol-
setg = 1 andg; = o3(- — L) (respectivelyp = 1 and  lowing alternating proximal algorithm generating a secqueen
J1 = t103(-—7T)). In such instances, (4) reduces to a classicalzy, L) ren in RY x RM*N:

convex problem.

Algorithm 4.1
3. LIMITATIONS OF BASIC ALTERNATING Fix 29 € RN, Ly € RM*Y and]p, 5[ C 0, +o0|
MINIMIZATION PROCEDURES ’ = ’
Fork=0,1,...
Let us define the following auxiliary functions. For evdrye (A, i) € [p,7)?

MxN
R , we set T4t = PrOXy,p, Tk

Ly = Prox,, 4. L.
ch'xHZfZ )+ h(z — Lz) (5) B
It is worth pointing out that, in the supervised case when

q = landg, = tfoy(- — L) (respectivelyp = 1 and f; =

N
and, for everys € R™, we set ti03(- — @)), the method reduces to the standard proximal

q point algorithm [6].
et LY g;(L) + h(z — La), (6) The computational complexity of Algorithm 4.1 is usually
j=1 similar to that of Algorithm 3.1. In addition, Algorithm 4.1

enjoys attractive convergence properties. First, we réval
Wy € To(RMXN), @ is coercive iflim 42—+ ®(2, L) = +oo and it is

A popular approach for solving Problem 3 consists ofSemi-algebraicifits grapgra ® = {((,L),v) |v=®(z,L)}
applying an alternating minimization approach. The cor- is a semi-algebraic set, that is, it can be expressed asa finit

N MxN
responding algorithm, sometimes called the Gauss- Seldlsflnlon of subsets ofR * x R™*) x R defined by a finite
method, takes the following form. number of polynomial inequalities. The set of semi-algabra

functions constitutes a wide class of functions, including

For fixed values of.. and z, we havey; € TI'g(RY) and

Algorithm 3.1 many etandard func’Fi(_)ns, and_ it_ is _stab_le threugh common
operations (e.g., addition, multiplication, inversiongdacom-
Fix Lo € RM*N position). The following result follows from Lemma 5 and
Fork=0,1,... Theorem 9 in [2].
{ Ty € Argmingy, Proposition 4.2 Let ® be as in Problem 2.1. Then, for every
Liy1 € Argmin iy, . keN,

This algorithm may provide satisfactory results in pragtic

However, it is well known that such an alternating minimiza-  ®(zx41, Li+1)
tion procedure requires quite restrictive conditions tangun-

tee convergence to a local minimizer, e.g., [4] (the lack of

1
[ @rg1 — x> + 2—|\Lk+1 — Li|?
HE

o



If, in addition, ® is coercive, ther® has a global minimizer. where F € RX*¥ corresponds to a frame analysis opera-
If, furthermore, ® is semi-algebraic, then every sequencetor, ({;)1</<x € [0, +oo[K and (k¢)1<e<x € [1,+oo[F
(zr, Lk ) ren generated by Algorithm 4.1 converges to a criti- (rational values ofr¢)1<¢< i are chosen so thgi is a semi-
cal point of®. algebraic function). We also take into account the avadlabl

information on the range intensity values by settifig =
Proposition 4.3 [2, Theorem 11] et® be as in Problem 2.1 4 555~ Hencep = 2.

and suppose that it is coercive and semi—algebraic.(lfef) The blur is modeled by a periodic convolution with a ker-
be the limit of a sequencer, L)ren generated by Algo- nel H € RP*Q, Let S be the linear operator which maps
rithm 4.1. Then one of the following holds. a filter kernelH € RP*% to its associated circulant block-

circulant transform matrix of siz& x N (whenN; > P

andN, > Q). This yieldsL = S(H). Prior information on

(i) There existr € ]0,1[ and#n € ]0,4o0[ such that, for the unknown degradation operator can be incorporated by as-
everyk € N, ||z, — Z||2 + || Lr — L||? < nr*. suming thatl, = S(H), whereH = (Hpn,m)i<n<P1<m<Q

satisfies the following properties.

(i) Convergence occurs in a finite number of iterations.

(iif) There exist andn in ]0, +oo[ such that, for every € -
N~ {0}, |lzx — Z))2 + || L — L||2 < nk~*. e nonnegativity:H € ([0, +-o0[)"*<.

A main difficulty in the implementation of Algorithm 4.1 ° mean:Zf:1 Zgzl Hpm=1.
is the computation of the proximity operatqm)xAWLk and
ProX,, ., at each iteratiort. This task can be efficiently
performed by using the parallel Dykstra-like proximal algo
rithm proposed in [5]. This leads to the following routine to

e bounds on vertical variations of the blur:

(Vne{l,...,P—-1})(Yme{l,...,Q})

computeprox, ,, * With A € ]0,+oc[, L € RM*N, and 1 nm < Hoprm — Hom < Brnm, (11)
x € RY (a similar method can be employed to compute ]
prox,,,, Lwith i € 0,400], 2 € RY, andL € RM*N), where(a1,n,m)n,m and(B1,n,m)n,m are given.
Algorithm 4.4 e bounds on horizontal variations of the blur:
Fixyo:I,SLO:yo,...,Serl_’():yo, and (VRE{l,,P})(VmG{L,Q—l})
(wi)15i§p+1 €10, 1]p+1 such thath;l w; =1 a2 nm < Hymy1 — Hym < Bonm,  (12)
For¢=0,1,... where(az 5.m)n.m and(B2.n.m)n.m are given.
Fori=1,...,p . .
{ Tip = DrOXas, i The above constraints define four closed convex subsets
i (D;)1<j<a Oof RPXQ. We consequently chooge= 4 and
Tp+le = PTOXM(eoL) Tptl st (V5 € {1,2,3,4}) g; = ts(p,)-
Yey1 = prll Wil 0 Fig. 1 displays the original satellite image (wiffy, =
Fori =1, o P _|_71 N> = 512) which s blurred by an anisotropic truncated Gaus-

sian kernel of siz§ x 7. The blurred signal-to-noise ratio is
equal to 20.7 dB in the degraded image shown in Fig 2. Fig. 3
. shows the result provided by Algorithm 4.1. The method was
Proposition 4.5 [5, Theorem 4.2] The sequen@g )cen 9N~ jpitialized with the blurred imagerf, — =) and a uniform ker-

{ Si 041 = Yea1 + Sip — i

erated by Algorithm 4.4 convergesitoox,, , . nel. A symlet 8 wavelet basis decomposition computed over
4 resolution levels is used in this example, and the parame-
5. SIMULATION EXAMPLE ters({r)1<e<x and(k¢)1<i<x are subband-dependent (they

have been chosen with a maximum likelihood approach). The
We consider a blind deconvolution scenario where an originasounds on the vertical (respectively, horizontal) vaciasi of
8 bit N1 x N, imagex is degraded by a blur and the addition the blur are(vm € {1,...,7}) (Vn € {1,...,3}) a1.p.m =

of a zero-mean white Gaussian noise with variante We ¢ andg, ,,,, = 6 x 10~3 and(Vn € {4,...,6}) a1 pm =
havethus\/ = N = N1 N, andh = ||-||*/(20%). Aclassical 6 x 10-3 and, ,, ,, = 0 (respectively(vn € {1,...,7})
generalized Gaussian frame-analysis prior [1, 8] is assumev, e {1,...,3}) agp.m = 0 andBan.m = 3 x 1073 and
for the original image, which yields (Ym € {4,...,6}) Qo mm = —3 % 1073 and B n m = 0).

K As shown visually, and confirmed by the provided signal-to-
(Vz € RY) fi(z) = Z Ql(F:c)“) e (10) n0|§e_rat|os (SNR), the results are close to those_obtalyled b
=t a similar wavelet-based restoration approach which assume

that the blur is known (see Fig. 4).



Fig. 1. Original imagez.

Fig. 2. Degraded image: SNR =12.5dB, SSIM =0.683. Fig. 4. Supervised restoration: SNR = 14.5 dB, SSIM =
0.812.
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