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ABSTRACT

This paper presents a block-based face-recognition algorithm based
on a sparse linear-regression subspace model via locally adaptive
dictionary constructed from past observable data (training sam-
ples). The local features of the algorithm provide an immediate
benefit – the increase in robustness level to various registration
errors. Our proposed approach is inspired by the way human be-
ings often compare faces when presented with a tough decision:
we analyze a series of local discriminative features (do the eyes
match? how about the nose? what about the chin?...) and then
make the final classification decision based on the fusion of lo-
cal recognition results. In other words, our algorithm attempts to
represent a block in an incoming test image as a linear combina-
tion of only a few atoms in a dictionary consisting of neighboring
blocks in the same region across all training samples. The results
of a series of these sparse local representations are used directly
for recognition via either maximum likelihood fusion or a simple
democratic majority voting scheme. Simulation results on stan-
dard face databases demonstrate the effectiveness of the proposed
algorithm in the presence of multiple mis-registration errors such
as translation, rotation, and scaling.

1. INTRODUCTION

Sparse representations have been recently exploited in many pat-
tern recognition applications [1–3]. These approaches are based
on the assumption that a test sample approximately lies in a low-
dimensional subspace spanned by the training data and thus can be
compactly represented by a few training samples. The recovered
sparse vector then can be used directly for recognition. This ap-
proach is simple and fast since no training stage is needed and the
dictionary can be easily expanded by additional training samples.
The original sparsity-based face recognition algorithm [1] yields
superior recognition performance comparing to existing techniques.
However, it suffers from the limitation that the test face must be
perfectly aligned to the training data prior to classification. To
overcome this problem, various methods have been proposed for
simultaneously optimizing the registration parameters and the sparse
coefficients [4, 5], leading to even more complicated systems.

In many signal processing applications, local features are more
representative and contain more important information than global
features. One of such examples is the block-based motion esti-
mation technique successfully employed in multiple video com-
pression standards. In this paper, we investigate the usage of local
features in the face recognition task. We propose a robust yet sim-
ple approach to deal with the misalignment problem by adopting
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a local block-based sparsity model. The model is based on the ob-
servation that a block in a test image can be sparsely represented
by neighboring blocks in the training images and the sparse rep-
resentation encodes the block identity. Note that in our proposed
approach, no explicit registration is required. We propose to use
multiple blocks, classify each block individually, and then com-
bine the classification results for all blocks. In this way, instead
of making a decision on one single global sparse representation,
we rely on a combination of decisions from local sparse represen-
tations. This approach exploits the flexibility of the local block-
based model and its ability to capture relatively stationary features
under uniform and nonuniform variations, leading to a system ro-
bust to various types of misalignment.

The remainder of this paper is structured as follows. Details
about the proposed method are described in Section 2. Its effec-
tiveness is demonstrated in Section 3 by simulation results. Fi-
nally, Section 4 summarizes our work and makes some closing
remarks.

2. BLOCK-BASED ROBUST FACE RECOGNITION

We first briefly introduce the original sparsity-based face recog-
nition technique [1]. It is observed that a test sample can be ex-
pressed by a sparse linear combination of training samples

yyy = DDDααα,

where yyy is the vectorized test sample, columns of DDD are the vector-
ized training samples of all classes, and ααα is a sparse vector (i.e.,
only few entries in ααα are nonzero). The classifier seeks the sparsest
representation by solving

α̂αα0 = argmin‖ααα‖0 subject to DDDααα = yyy, (1)

where ‖·‖0 denotes the �0-norm which is defined as the number of
nonzero entries in the vector. Once the sparse vector is recovered,
the identity of yyy is then given by the minimal residual

identity(yyy) = argmin
i
‖yyy−DDDδi(α̂αα0)‖ , (2)

where δi(ααα) is a vector whose only nonzero entries are the same
as those in ααα associated with class i. With the recently-developed
theory of compressed sensing [6], the �0-norm minimization prob-
lem (1) can be efficiently solved by recasting it as a linear program-
ming problem. Alternatively, the problem in (1) can be solved by
greedy pursuit algorithms [7, 8].

As previously mentioned, the original technique [1] does not
address the problem of registration errors in the test data. In what
follows, we propose a robust yet simple approach to deal with
misalignment by exploiting the flexibility of the local block-based
model. Let K be the number of classes in the training data and Nk
be the number of training samples in the kth class. We adopt the
inter-frame sparsity model [9] in which a block in a video frame
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can be sparsely represented by few neighboring blocks in refer-
ence frames. Fig. 1(a) illustrates the proposed method of repre-
senting a block in the test face image YYY from a locally adaptive
dictionary consisting of neighboring blocks in the training images
{XXXt}t=1,...,T in the same physical area, where T = ∑K

k=1 Nk is the
total number of training samples (only one training image is shown
in Fig. 1). To be more specific, let yyyi j be an MN-dimensional vec-
tor representing the vectorized M×N block in the test image with
the upper left pixel located at (i, j). Define the search region SSSt

i j to
be the (M +2 � M)× (N +2 � N) block in the tth training image
XXXt as:

SSSt
i j =

⎡
⎢⎣

xt
i−�M, j−�N · · · xt

i−�M, j+N−1+�N
...

. . .
...

xt
i+M−1+�M, j−�N · · · xt

i+M−1+�M, j+N−1+�N

⎤
⎥⎦ .

From the search regions of all T training images, we can construct
the dictionary DDDi j for the block yyyi j as

DDDi j =
[
DDD1

i j DDD2
i j · · · DDDT

i j

]
,

where each

DDDt
i j =

[
dddt

i−�M, j−�N dddt
i−�M, j−�N+1 · · · dddt

i+�M, j+�N
]

is an (MN)×
(
(2 � M+1)(2 � N +1)

)
matrix whose columns are

the vectorized blocks in the tth training image defined in the same
way as yyyi j . The dictionary DDDi j is locally adaptive and changes
from block to block. The size of the dictionary depends on the non-
stationary behavior of the data as well as the level of computational
complexity we can afford. In the presence of registration error,
the test image YYY may no longer lie in the subspace spanned by the
training samples {XXXt}t . At the block level, however, yyyi j can still be

approximate by the blocks in the training samples
{
dddt

i j

}
t,i, j

. Com-

pared to the original approach, the dictionary DDDi j better captures
the local characteristics. Note that our approach is quite differ-
ent from patch-based dictionary learning [10] from several angles:
(i) we emphasize the local adaptivity of the dictionaries; and (ii)
dictionaries in our approach are directly obtained from the data
without any complicated learning process.

We propose that the block yyyi j in the misaligned image YYY can
be sparsely approximated by a linear combination of a few atoms
in the dictionary DDDi j: yyyi j = DDDi jαααi j, (3)
where αααi j is sparse vector, as illustrated in Fig. 1(b). The sparse
vector can be recovered by solving the minimal �0-norm problem

α̂ααi j = argmin
∥∥αααi j

∥∥
0 subject to DDDi jαααi j = yyyi j. (4)

Since our sparse recovery is performed on a small block of data
with a modest size dictionary, the resulting complexity of the over-
all algorithm is manageable. After the sparse vector α̂ααi j is ob-
tained, the identity of the test block can be determined by the error
residuals by

identity(yyyi j) = arg min
k=1,...,K

∥∥yyyi j−DDDi jδδδk
(
α̂ααi j

)∥∥
2 , (5)

where δδδk
(
α̂ααi j

)
is as defined in (2).

To improve the robustness, we propose to employ multiple
blocks, classify each block individually, and then combine the
classification results. The blocks may be chosen completely at
random, or manually in the more representative areas (such as the
region around eyes) or areas with high SNR, or exhaustively in
the entire test image (non-overlapped or overlapped). Note that
since each block is handled independently, they can be processed
in parallel. Also, since blocks can be overlapped, our proposed
algorithm is computationally scalable - more computation delivers
better recognition result.

(i, j)

N

M

test image YYY

block yyyij

training image XXXt

� N

� M

· · ·

...

search range

candidate block dddt
ij

(a)

yyyij

= · · ·

dddt
ij

· · ·

DDDij

...

αααij

zero
nonzero

(b)

Fig. 1. Representation of a block in the test image from a locally
adaptive dictionary. (a) The blocks in the test and training images
(only one training sample is displayed). (b) Sparse representation
yyyi j = DDDi jαααi j .

Once the recognition results are obtained for all blocks, they
can be combined by majority voting. Let L be the number of blocks
in the test image YYY , and {yyyl}l=1,...,L be the L blocks. Then, by
majority voting

identity(YYY ) = max
k=1,...,K

|{l = 1, . . . ,L : identity(yyyl) = k}| ,

where |S| denotes the cardinality of a set S and identity(yyyl) is de-
termined by (5).

Maximum likelihood is an alternative way to fuse the classifi-
cation results from multiple blocks. For a block yyyl , its sparse rep-
resentation α̂ααl obtained by solving (4), and the local dictionary DDDl ,
we define the probability of yyyl belonging to the kth class to be in-
versely proportional to the residual associated with the dictionary
atoms in the kth class:

pk
l = P(identity(yyyl) = k) =

1/rk
l

∑K
k=1

(
1/rk

l

) , (6)

where rk
l = ‖yyyl −DDDlδδδk (α̂ααl)‖2 is the residual associated with the kth

class and the vector δδδk (α̂ααl) is as defined in (5). Then, the identity
of the test imageYYY is given by

identity(YYY ) = arg max
k=1,...,K

log

(
L

∏
l=1

pk
l

)
. (7)

The maximum likelihood approach can also be used as a measure
to reject outliers, as for an outlier the probability of it belonging to
some class tends to be uniformly distributed among all classes in
the training data.

Fig. 2 illustrates an example of the proposed approach with
multiple blocks. The test and training images are taken from the
Extended Yale B Database [11] which consists of face images of
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38 individuals. More details about this database and the experi-
ment setup will be described in the next section. Fig. 2(a) shows
the original (registered) image in the 31st class, and Fig. 2(b) shows
the test image to be classified, which is obtained by translating the
original one by 3 pixels in each direction, rotating by 4 degrees,
and then zooming in by a scaling factor of 1.125 in the vertical
direction and 1.143 in the horizontal direction. Due to the mis-
alignment, the original global approach in [1] leads to misclassifi-
cation, as seen by the residuals in Fig. 2(c) where the 7th class has
the minimal residual. Using the proposed approach, we choose 42
blocks of size 8× 8 uniformly from the test image in Fig. 2(b).
The blocks and classification result for each individual block are
displayed in Fig. 2(d). Figs. 2(e) and (f) show the results using ma-
jority voting and maximum likelihood, respectively. In both cases,
the block-based algorithm yields the correct answer.

(a) (b)

(c)
1 31 25 25 13 28 33 2 31 7 13 14 27 31

36 31 20 13 31 33 34 36 37 29 23 31 32 5

5 35 26 14 30 20 31 10 31 28 35 13 11 15

(d)

(e)

(f)

Fig. 2. Example of the proposed sparsity-based approach us-
ing multiple blocks. (a) Original image. (b) Distorted test
image YYY . (c) Residuals using the original global approach:
identity(YYY ) = 7. (d) Classification results for each of the 42
blocks {yyyl}l=1,...,42. (e) Number of votes for the kth class, k =

1, . . . ,38. Identity(YYY ) = 31. (f) Probability of (identity(YYY ) = k),
k = 1, . . . ,38. Identity(YYY ) = 31.

The above example illustrates the process of the block-based
algorithm in the presence of registration errors. When the errors
become more significant, we may also augment the local dictio-

nary by including distorted versions of the local blocks in the train-
ing data for a better performance, at the cost of higher computa-
tional complexity.

3. SIMULATION RESULTS

In this section, we apply the proposed block-based algorithm for
identification on a publicly available database - the Extended Yale
B Database [11], and compare the performance with the original
algorithm in [1]. This database consists of 2414 perfectly-aligned
frontal face images of size 192× 168 of 38 individuals, 64 im-
ages per individual, under various conditions of illumination. In
our experiments, for each subject we randomly choose 15 images
in Subsets 1 and 2, which were taken under less extreme lighting
conditions, as the training data. Then, we randomly choose 500
images from the remaining images as test data. All training and
test samples are downsampled to size 32×28. The Subspace Pur-
suit algorithm [8] is used to solve the sparse recovery problem (4).

To verify the effectiveness of the proposed algorithm under
registration errors, we create distorted test images in several ways
and keep the training images unchanged. Obviously, the proposed
algorithm is robust to image translation by choosing an appropriate
search region for each block such that the corresponding blocks in
the training images are included in the dictionary. Next, we show
experimental results for test images under rotation and scaling op-
erations. In the first set of experiments, the test images are ro-
tated by degrees between -20 and 20, as seen by the example in
Fig. 3. We apply the block-based algorithm to 42 blocks of size

(a) (b)

Fig. 3. An example of rotated test images. (a) Original image and
(b) the image rotated by 20 degrees clockwise.

8×8 uniformly located on the test image, and the results are com-
bined using the maximum likelihood approach (6). Fig. 4 shows
the recognition rate (y-axis) for each rotation degree (x-axis). We
see that at a higher level of misalignment, the block-based algo-
rithm (in red circles) outperforms the original algorithm (in blue
x-marks) by a large margin.

For the second set of experiments, the test images are stretched
in both directions by scaling factors up to 1.313 vertically and
1.357 horizontally. An example of an aligned image in the database
and its distorted version to be tested are shown in Fig. 5. Similar
to the previous case, for each test image, we apply the algorithm to
42 uniformly-located blocks of size 8×8 and combine the results
by (6). Tables 1 and 2 show the percentage of correct identifica-
tion out of 500 tests with various scaling factors. The first row and
the first column in the tables indicate the scaling factors in the hor-
izontal and vertical directions, respectively, and the other entries
correspond to the recognition rate in percentage. We see that again
when there are large registration errors, the block-based algorithm
leads to a better identification performance than the original algo-
rithm.

1659



−20 −15 −10 −5 0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
global
local

Fig. 4. Recognition rate for rotated test images.

(a) (b)

Fig. 5. An example of scaled test images. (a) Original image and
(b) the image scaled by 1.313 vertically and 1.357 horizontally.

Table 1. Recognition rate (in percentage) for scaled test images
using the original global approach in [1] under various scaling fac-
tors (SF).

SF 1 1.071 1.143 1.214 1.286 1.357
1 100 100 94.8 71.4 51.8 41.4
1.063 99.2 95.0 76.6 51.8 33.8 28.6
1.125 84.6 66.4 42.6 25.2 18.6 14.6
1.188 52 37.2 20.6 15.6 11.6 8
1.25 33.2 26.4 16.8 11.4 9.4 7.6
1.313 33.6 22.6 14.6 10.6 7.4 7.6

Table 2. Recognition rate (in percentage) for scaled test images
using the proposed block-based approach under various SF.

SF 1 1.071 1.143 1.214 1.286 1.357
1 98 96.4 97.6 96.4 96.4 95.2
1.063 97.4 96.6 96.6 95.6 92.4 90
1.125 97 95.4 94.6 94.6 92.6 90.2
1.188 95 94 91.8 90.2 85.6 82.2
1.25 93.8 92.4 89 85 79.4 73.6
1.313 88.8 85 79 75.8 67 59.2

In the last experiment, the 500 test images are shifted by 3
pixels downwards and rightwards (about 10% of the side lengths),
rotated by 4 degrees counterclockwise, and then zoomed in by
1.125 and 1.143 in vertical and horizontal directions, respectively.
One example of the misaligned test images is shown in Figs. 2(a)
and (b). In this case of combined misalignment, the original ap-
proach only successfully identifies 20 out of 500 test images, while
the block-based algorithm yields an identification rate of 82% (i.e.,

410 out of 500 are correctly recognized).

4. CONCLUSION

In this paper, we propose a block-based algorithm for face recog-
nition via sparse representation. By constructing locally adaptive
dictionaries that capture the relative stationary features in a small
neighborhood, the proposed algorithm is robust to various types
of misalignment between the test and training data, without ex-
plicit computation of the registration parameters. We propose to
use multiple blocks in the same test image and combine all classi-
fication results to further improve the robustness. As demonstrated
by the simulation results on the Extended Yale B Database, the
proposed algorithm yields excellent performance in the presence
of registration errors.
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