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ABSTRACT
Current texture analysis methods enable good discrimina-
tion but are computationally too expensive for applications
which require high frame rates. This occurs because they
use redundant calculations, failing in capturing the essence
of the texture discrimination problem. In this paper we use
a learning approach to obtain simple filters for this task.
Although others have proposed learning-based methods,
we are the first to simultaneously achieve discrimination
rates comparable with state-of-the art methods at high
frame rates. We particularize the general methodology
to different filter structures, e.g., rotationally discriminant
filters and rotationally invariant ones. We use Genetic
Algorithms for learning and test our method against state-
of-the-art ones, using the Brodatz album.

Index Terms—Image texture analysis, genetic algorithms

I. INTRODUCTION
Images of real scenes often contain texture patterns. The
analysis of such patterns is used in texture discrimination,
segmentation, synthesis, and Shape From Texture. This
has multiple applications, e.g., automated textile and paint
inspection, medical image analysis, document processing.

Although texture discrimination has been studied for
many years (for a review on texture analysis, see [1]) there
are no highly discriminant methods that work at high frame
rates. The most common state-of-the-art discrimination
methods are Gray-Level Co-occurrence Matrices (GLCM)
and Gabor Filter Banks (GFB).

GLCM [2] creates a 28× 28 matrix (for 8-bit precision)
for each texture patch. Its ij entry computes the co-
occurrences of a pair of neighboring pixels with values i
and j. From this matrix, a vector of so-called Haralick fea-
tures (Energy, Contrast, Dissimilarity, ...) is computed and
used in measuring Euclidean distances between patches.

GFB [3] compute, for every pixel, a filter bank of about
ten to fifty filters. The large dimensional vectors per pixel
are clustered with K-means and a histogram with K bins
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is computed. Each bin counts the pixels that belong to each
cluster. The distance between texture patches is computed
with histogram distance metrics such as the χ2 test. Both
GLCM and GFB are computationally very complex.

In this paper we use a learning approach to obtain
a computationally simple discrimination method. Others
have used learning approaches for this task. Reference [4]
proposed a Genetic Programming scheme to evolve dis-
criminators of pixel histograms of different textures. This
method leads to simple but poor discrimination. A neural-
network is used in [5] and reference [6] challenges filter-
bank methods by using small pixel neighborhoods in a
Markov Random Fields scheme. These methods, like the
ones referred above, are highly discriminant but computa-
tionally too expensive for high frame rate implementations.

Our approach imposes simple filters and we particularize
the general methodology to filter structures capable of high
frame rates, which implement rotationally discriminant and
rotationally invariant filters. We use a Genetic Algorithm
for learning the filter parameters. We obtain an accuracy
comparable to state-of-the-art methods in discriminating
both known and new textures of the Brodatz album.
Paper organization Section II introduces our learning
methodology for texture discrimination. Section III partic-
ularizes it for rotationally discriminant and invariant filters
and Section IV shows how to learn them. Section V shows
experimental results and we conclude on Section VI.

II. TEXTURE DISCRIMINATION FILTERS
Consider a training set of N texture patches from T tex-
tures classes, and a function C :{0, ..., N−1}→{0, ..., T−
1} that maps each patch to the corresponding class. Patch
n is denoted by tn∈Rp×q and φ :Rp×q→Rv is the texture
discrimination filter we wish to learn. Modeling φ(tn) as
a random variable following a Gaussian distribution of
average µCn

and covariance I , the maximum-likelihood
class estimate for a new texture patch, ĵML, is given by

ĵML = arg max
j
p(φ(t)|j) = arg min

j

∥∥φ(t)− µj
∥∥2
2
, (1)

µj =

∑
{n:Cn=j} φ(tn)∑
{n:Cn=j} 1

,∀j∈{0,...,T−1}. (2)



Although it is possible to learn a discrimination filter
φ(.) that handles the complete texture patch directly, this is
not the typical approach in texture discrimination methods.
Julesz [7] studied extensively the way humans perceive
textures and proposed the theory of textons. Textons are
the basic sub-elements of textures. Julesz considered that
humans discriminate textures by first analyzing individual
textons and then integrating that information with respect
to their occurrence rates, locations, etc. Typical discrim-
ination methods use this approach: they analyze smaller
portions of the texture patch – the textons – and combine
the overall data into a discriminating feature vector.

We incorporate this approach into our texture discrimi-
nation filter φ(.) aswell. Let tn(x, y) denote a small sub-
section of tn centered at point (x, y) – a texton. We define
a texton analysis filter, ψ(.), which extracts features from
each texton, ψ (tn(x, y)). These features are concentrated
in an aggregation matrix , Ψ(tn), which is processed with
an integration function, Φ(.). This function combines the
various texton features to form a global feature vector for
the texture patch, φ(tn). Formally,

Ψ(tn) =

 ψ(tn(0, 0)) · · · ψ(tn(p− 1, 0))
...

. . .
...

ψ(tn(0, q − 1)) · · · ψ(tn(p− 1, q − 1))

 ,
φ(tn) = Φ(Ψ(tn)). (3)

Therefore, learning texture filter φ(.) consists of learning
the texton analysis filter ψ(.) and integration function Φ(.).

III. EXAMPLES OF FILTER STRUCTURES
In this section we propose two filter structures for φ(.), us-
ing the texton approach of (3). They implement rotationally
discriminant filters and rotationally invariant ones.
Texton analysis filter – The two filter structures we
propose have similar texton analysis filters. We impose
that each filter is a point-wise multiplication of a texton
and a matrix. Consequently, the aggregation matrix Ψ(tn)
is simply the convolution of texture tn and matrix w,

Ψ(tn) = tn ⊗w, (4)

where ⊗ is the convolution operator. Using I texton
analysis functions, the i-th aggregation matrix, Ψi(tn), is
the convolution of texture patch tn and matrix wi, with
i ∈ {1, . . . , I}. I is a parameter that we can adjust. As we
increase I , the overall discrimination ability improves, at
the expense of a higher computational cost.

Matrices wi are estimated in the training phase and
make up different filter supports through the location of
non-zero values. The rotationally discriminant filters use
wi with horizontal and vertical non-zero values (Fig-
ure 1.a) and the rotationally invariant ones use wi with
circular non-zero values (Figure 1.b).

(a) rotationally discriminant (b) rotationally invariant

Fig. 1. Location of non-zero values in texton analysis filters

Integration function – The convolutions of a texture
patch with a set of filters,

{
Ψi(tn)

}
, aggregates data about

textons. Many texture discrimination methods compute a
histogram of texton data and use it as a discrimination
feature. In this scenario, the distance between two texture
patches is given by histogram distance metrics such as
the χ2 test. The integration function we propose, Φ(.),
approximates the histogram of Ψi(tn) by easy-to-compute
high-order statistics. We compute the average, standard
deviation and two standardized moments of Ψi(tn),

κ1 = µ′1 ≡ µ,

κ2 =

√
µ′2 − µ′1

2 ≡ σ,

κ3 =
(
µ′3 − 3µ′2µ

′
1 + 2µ′1

3
)
/κ32, (5)

κ4 =
(
µ′4 − 4µ′3µ

′
1 + 6µ′2µ

′
1
2 − 3µ′1

4
)
/κ42,

µ′l = E
[
Ψ (tn)

l
]

=
1

pq

q−1∑
x=0

p−1∑
y=0

(
Ψ (tn)x,y

)l
,

where κj is the j-th statistic we compute and µ′l is
the l-th moment about the origin of Ψ(tn). µ′l can be
computed efficiently by using a sliding window box filter
for each l. The discrimination vector, φ(tn), is obtained
by multiplying weights αij by the κj

(
Ψi (tn)

)
statistics.

Method I - Rotationally discriminant filter – We define

Ψi
H(tn) = tn ⊗

(
wi
)T
,

Ψi
V (tn) = tn ⊗wi,

φ(tn) = Φ(Ψ(tn)) =



αH1
1
κ1
(
Ψ1
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αH1
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(
Ψ1
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αH1

3
κ3
(
Ψ1
H(tn)

)
αH1

4
κ4
(
Ψ1
H(tn)
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αV 1

1
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(
Ψ1
V (tn)
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αV 1

2
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(
Ψ1
V (tn)
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αV 1

3
κ3
(
Ψ1
V (tn)

)
αV 1

4
κ4
(
Ψ1
V (tn)

)
...


,

where
{

Ψi
H(tn),Ψi

V (tn)
}

is the set of aggregation ma-
trices given by the convolution of texture patch tn with
matrices

{(
wi
)T
,wi

}
. The non-zero values of wi define



a filter with vertical support and
(
wi
)T

, a filter with hori-
zontal support.

{
κj
(
Ψi
H(tn)

)
, κj

(
Ψi
V (tn)

)}
are the j-th

statistics of the aggregation matrices, which are multiplied
by weights αij =

{
αHi

j
,αV i

j

}
to make up a discrimina-

tion vector, φ(tn). Vector φ(tn) has size (8I)× 1.
Method II - Rotationally invariant filter – We define

Ψi
C(tn) = tn ⊗wi

C ,

φ(tn) = Φ (ΨC(tn)) =


αC1

1
κ1
(
Ψ1
C(tn)

)
αC1

2
κ2
(
Ψ1
C(tn)

)
αC1

3
κ3
(
Ψ1
C(tn)

)
αC1

4
κ4
(
Ψ1
C(tn)

)
...

 ,

where the non-zero values of wi
C create a filter with cir-

cular support, as illustrated in Figure 1.b. The aggregation
matrix, Ψi

C(tn), is the convolution of tn and wi
C and

κj
(
Ψi
C(tn)

)
, the corresponding j-th statistic. The texture

discrimination vector φ(tn) is created by multiplying each
statistic with weight αCi

j
and has thus size (4I)× 1.

IV. LEARNING TEXTURE FILTERS
In this section, we show how to learn the filter parameters,
in particular for the structures presented in Section III.
Problem formulation – Assuming that all classes are
equally likely, the sum of the probabilities of estimating
the correct class, Cn, is given by

N−1∑
n=0

p (Cn|φ (tn)) =

N−1∑
n=0

p (φ (tn) |Cn)∑T−1
i=0 p (φ (tn) |i)

=

=

N−1∑
n=0

N (φ(tn)|µCn
, I)∑T−1

i=0 N (φ(tn)|µi, I)
, (6)

where each µj is given by (2). We learn the discrimination
filter, φ(.), by maximizing (6) as a function of its internal
parameters, wi and αi, for a chosen I .

Although we address the maximization of (6) in the
sequel, this problem can be simplified by removing its
denominator. Because the denominator favors solutions
where texture classes have different averages, it is nec-
essary to impose that all averages, µi, are at least ε apart.
This leads to the simpler optimization problem,

max
φ

N−1∑
n=0

N
(
φ(tn)|µCn

, I
)

= min
φ

N−1∑
n=0

∥∥φ(tn)− µCn

∥∥2
2
,

subject to
∥∥µi − µj∥∥22 ≥ ε2,∀i 6=j . (7)

Filter estimation – The maximization of (6) is an opti-
mization problem in the domain of the internal parameters
of φ(.), αi and wi. Because function (6) is nonconcave,
this problem is complex. We use a Genetic Algorithm
(GA) [8] for this purpose. Although GAs provide no
guarantee of convergence to the global optimum, they

are known to perform well in nonconcave problems, as
the crossover step moves the population away from local
optima that a traditional hill climbing algorithm might
get stuck in. They are easy to implement but have the
disadvantage of being slow, although the training phase
occurs offline. Our algorithm consists of:

GENETIC ALGORITHM

1) Create a population where each member contains internal
parameters of φ(.), initialized with random uniform values
2) Compute fitness of each member with fitness function (6)
3) Elitism: select and preserve the fittest members
4) Create a new generation from the fittest members by:
4.1) Crossover: copying values from two random members
4.2) Mutation: adding random uniform noise to a copy of a
member. The magnitude of the added noise decreases with
every generation, to enable hill-climbing
5) Iterate from 2 onwards until convergence.

V. EXPERIMENTS
Training – We use a training set consisting of N = 1025
texture patches from T = 41 texture classes. Each class
corresponds to an image from the Brodatz album [9],
from which 25 non-overlapping patches are extracted. The
Brodatz album, illustrated in Figure 2, is the de facto
standard for evaluating texture analysis methods, with
hundreds of studies having been applied to its images.

We use patches of size p× q = 60× 60 and texton sub-
patches of size 7 × 7. The genetic algorithm, described
in Section IV, uses a population of 5000 members, 10%
elitism rate, 50% crossover rate and 40% mutation rate. It
is initialized with random uniform values of magnitude
1 and the mutation noise has magnitude 1 in the first
generation and is multiplied by 0.8 in every generation.
We obtain wi and αi that maximize (6) for the texture
discrimination filters, φ(.), we propose in Section III.

Fig. 2. D18 and D87 images from the Brodatz database [9]

Test – We evaluate the discrimination filters obtained in
the training phase, φ(.), in two scenarios. In the first, we
classify texture patches from the same classes used in the
training phase (using p × q = 60 × 60). This illustrates
applications where we know beforehand the set of textures
we need to discriminate and we want a filter φ(.) that



Table I. Classification rate. † – uses database 1 of [10]
Method I Method II

GLCM† GFB†
I training DB1† I training DB1†
1 93.2% 94.6%

4 80.0% 72.7% 66.7% 92.2%2 97.7% 97.7%
3 98.7% 97.1%

is highly discriminant and efficient in this scenario. In
the second scenario, we use filter φ(.) on database 1
(DB1) of the large comparative study of popular texture
discrimination methods, in [10]. By doing so we can: 1)
directly compare the performance of our method against
other popular methods and; 2) test the generalization ability
of filter φ(.), since 45% of the classes in this database
are not present in the training set. DB1 [10] consists
of N = 960 non-overlapping texture patches of size
p × q = 160 × 160. It contains T = 60 texture classes
where each corresponds to an image of the Brodatz album.
Analysis – Table I shows the accuracy of our method and
two state-of-the-art discrimination methods: GLCM [2] and
GFB [3]. Method I has an accuracy comparable to state-
of-the-art methods, for any I and for both test sets. In
particular, a single horizontal and vertical convolution and
respective high-order statistics, extremely fast to compute,
achieves an accuracy of 93.2% and 94.6% in both test sets.
Increasing I yields higher classification accuracy, except
for method I and I = 3, in DB1 [10]. This occurs due
to a natural overfitting of function φ(.) to the training set.
Table I also shows that method II is able to successfully
classify 80.0% and 72.7% of the patches in both test sets,
with I = 4, regardless of their rotation angle.

The frequency response of filter w, for method I and
I = 1, is plotted in Figure 3.a. It shows that w is
essentially a wide band-pass filter that attenuates the lowest
and highest frequencies. This suggests that textures are
identified simply by analyzing the statistics of the transition
magnitudes. The low frequency attenuation indicates that
the average value of each texton is not useful in texture dis-
crimination. Because the Brodatz album is not very sharp,
the high-frequency attenuation is probably meant to reduce
the effect of noise. Figure 3.b plots the frequency response
of filters wi, for method I and I = 3. It shows a finer (and
redundant) distribution of the frequency spectrum by each
filter, which justifies the increased accuracy as I increases.

VI. CONCLUSIONS
In this paper, we use a learning approach to obtain simple
filters for texture discrimination. We particularized the
general methodology for rotationally discriminant and ro-
tationally invariant filter structures, obtaining an accuracy
comparable to state-of-the-art methods, at high frame rates.
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