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ABSTRACT

We deal with the problem of distributed source coding with
decoder side information, when the decoder observes the
source through a noisy channel. Existing approaches employ
syndrome- or parity-based channel codes. We propose a new
approach based on distributed arithmetic coding (DAC). We
introduce a DAC with forbidden symbol, which allows to tune
the redundancy according to the amount of channel noise. We
propose a novel sequential decoder that employs the known
side information to decode the corrupted codeword. Experi-
mental results show that the proposed scheme is better than
parity-based turbo codes at relatively short block lengths.

1. INTRODUCTION

In the last few years, a lot of interest has been devoted to
the problem of encoding correlated information sources. In
one such problem (coding with side information), the encoder
generates a codeword for sequenceX at rate less than its
entropy, knowing that the decoder will be aided by knowl-
edge of a correlated side informationY. The prevalent ap-
proach to this problem is to use channel codes designed for
the “virtual channel” betweenX andY, transmitting the syn-
drome or the parity bits of a channel code of suitable rate, e.g.
a low-density parity-check (LDPC) or turbo code. Alterna-
tively, distributed arithmetic coding (DAC) has also been pro-
posed [1]. DAC uses interval overlap during the arithmetic
coding (AC) process to yield and ambiguous compressed de-
scription ofX; sequential decoding ofX with branch metric
depending onY yields results better than turbo and LDPC
codes at relatively short block lengths.

Recently, the problem of distributed joint source-channel
coding has also been explored. In this setting, the codeword
representingX is not available exactly at the decoder, but is
received through a noisy communications channel. The de-
coder attempts to estimateX given the received sequenceR

and the known side informationY. In [2] irregular repeat-
accumulate codes are employed, while LDPC codes are used
in [3]. In [4] the syndrome and parity approaches are com-
pared, and the parity approach is found to be more error-
resilient under noisy transmission.

In this paper, we extend the DAC approach to the scenario

of noisy communication. The proposed encoder is a com-
bination of DAC and arithmetic coding with forbidden sym-
bol [5]. The decoding process for the noisy case poses signif-
icant challenges. Sequential decoders are typically either bit-
or symbol-synchronous, i.e. they use one codeword at each
step or they attempt to estimate one input bit at each step.
The joint problem is such that the side information is avail-
able in the symbol domain, but the channel model is available
in the codeword domain. As a consequence, a novel decoder
is required to successfully decode the received information in
the joint scenario.

2. PROPOSED TECHNIQUE

Let us consider a binary sequenceX =
[X0, X1, . . . , . . . , XL−1] with L binary symbols drawn with
probabilitiesp0 = P (Xi = 0) andp1 = P (Xi = 1), and the
correlated side informationY = [Y0, Y1, . . . , Yi, . . . , YL−1].
The goal of joint source channel distributed encoding is to
encode and reliably transmitX across a communication
channel by exploiting the fact that the correlated side
information is available at the receiver.

In this paper we address the scenario in whichX is
mapped onto the codewordC = [C0, C1, . . . , CN−1] by
means of the proposed modified AC. On the receiver side,
C is observed across a channel characterized by its transition
probabilityP (R|C). Moreover, the distributed joint source-
channel decoder (DJSCD) can exploit the knowledge of the
correlated side informationY. As usual in the related litera-
ture, we model the correlation by introducing a virtual corre-
lation channel of known transition probabilityP (Y|X). The
objective of the DJSCD is to select the most likely transmit-
ted sequence according to the maximum a posteriori criterion
(MAP) X̂ = argmaxX P (X|Y,R).

2.1. The encoder

Standard arithmetic coding operates by mapping the source
symbols onto sub-intervals of the[0, 1) probability space. The
coding procedure is based on a recursive interval selection:
for each input symbolXi, the coding interval is partitioned
into two adjacent sub-intervals whose lengths are proportional
to p0 andp1, respectively. The sub-interval representingXi is
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Fig. 1. Joint source channel distributed coding intervals.

selected for the following iteration. When all theN symbols
have been considered,X is mapped onto a binary codewordC

that can consist in any binary representation of a number ly-
ing in I; this mapping requires approximately− log

2
|I| bits,

where|I| is the length ofI. For largeN the coding rater(X)
approaches the source entropyH(X).

In the past years two modifications have been proposed
to achieve error resilience and distributed coding separately.
The first approach amounts to reserve a given portionǫ of the
probability interval to the so calledforbidden symbol µ. µ
is never encoded and serves as a continuous error detection
mechanism on the decoder side [5, 6]. The coding rate in-
creases tor(X ; ǫ) = H(X)− log2(1− ǫ) and the presence of
µ allows one to drive the MAP decoding algorithm. The sec-
ond AC modification is based on the insertion of an ambiguity
in the encoding process [1] and leads to the definition of the
distributed arithmetic coding (DAC). The DAC is obtained us-
ing larger probability intervals, i.e., proportional to the mod-
ified probabilities̃pj = αjpj , j = 0, 1 andαj ≥ 1. In order
to fit the enlarged sub-intervals̃pj into the(0, 1] interval, the
sub-intervals are allowed to partially overlap. The intuition is
that, since the intervals are not disjoint, the decoder willtyp-
ically be unable to decode the source unambiguously without
knowledge of the side information. If one setsαj = p−k

j the
coding rates turns to ber(X ; k) = (1−k)H(X) and any rate
r(X) ≤ H(X) can be achieved selecting the proper value of
k.

In this work we introduce bothµ and symbol overlap at
the same time so as to obtain a joint source channel distributed
AC. We note that, while the joint encoder is a relatively simple
combination of [5] and [1], the joint decoder requires a new
design and will be described in Sect. 2.2. The coding intervals
are modified as shown in Fig. 1. First of all, the forbidden
symbolµ is allocated the probabilityǫ on the right end of
the unit interval. The source symbols probabilities are then
reduced top′j = (1 − ǫ)pj to compensate for the reduced
probability space. Finally, the source symbol intervals are
allowed to overlap by setting̃pj = αjp

′

j = αj(1 − ǫ)pj . It is
intuitive that the parametersk andαj have opposite effects:
the first one shrinks the intervals and increase the coding rate,
the others reduce the coding rate by inserting ambiguity in
the decoding process. In practice, to make the decoder more
reliable, the lastf symbols are encoded without overlap, i.e.
k = 0. By settingαj = (p′j)

−k, the coding rate in presence

of bothµ and symbol overlap can be written as

r(X ; ǫ, k, f) =
(L − f)(1 − k) + f

L
(H(X) − log

2
(1 − ǫ))

(1)
If one sets a target rater∗, according to (1) the following

relation betweenǫ andk must hold:

k =
L

L − f

H(X) − log2(1 − ǫ) − r∗

H(X) − log2(1 − ǫ)
(2)

Therefore, givenr∗ and ǫ, (2) can be used to select the re-
quired value fork.

2.2. The decoder

Combining the error resilient and distribute coding capabili-
ties at the encoder side is not particularly difficult. The most
challenging issues are raised by the design of the decoder. In
principle, as for the DAC and error resilient AC, decoding can
be achieved by maximizing the MAP metric of the decoded
sequence using a sequential search approach. To this end we
have to employ a sequential decoder and introduce an additive
MAP metric to rank the various decoding attempts.

Arithmetic decoding is an iterative task, where at each
step the value of the coded sequenceC is used to select the in-
terval corresponding to a decoded symbol. The selected inter-
val is subdivided according to the known probabilities; thede-
coding process is repeated up to the detection of theL source
symbols. All the results reported in this paper are obtainedby
representing the intervals in 32 bit fixed point format and us-
ing the typical normalization strategies to avoid underflowin
the numerical representation of bothC and all the probability
values.

Sequential arithmetic decoding can be designed according
to abit-driven or symbol-driven approach.

In the first case one constrains the decoder to consume
only j out of theN codeword bits. Truncating the binary
representation ofC, means that we do not have enough nu-
merical precision to select the intervals corresponding toall
the source symbols. As soon as the numerical precision cor-
responding to the firstj bits is not enough to discriminate
between the sub-intervals, the sequential decoder is stopped
yielding a partial decoding attempt. The sequential decoder
state can be stored for subsequent use in future decoding at-
tempts that consider more codeword bits. This strategy is used
in [5] to represent the search space for MAP arithmetic decod-
ing in presence of transmission errors as a binary tree, where
branches are represented by alternative binary selectionsof
the codeword bitsCi = 0, 1.

In thesymbol driven case the wholeC is available but the
decoder is stopped as soon asi out of L source symbols are
detected. This complementary approach has led to the design
of the DAC decoder [1] evaluating conditional probabilities
along a binary search tree where branches are triggered when



the numerical value ofC falls in the overlapped, i.e. ambigu-
ous, sub-interval. In case of ambiguity both the alternatives
Xi = 0, 1 are tested and ranked in terms of the MAP metric.

The design of the DJSCD requires the conciliation of
both strategies: on the one hand only the noisy observa-
tions R are available and therefore we need to consider a
tree of decoding attempts triggered by opposite decisions
for eachCi. On the other hand the presence of interval
overlap introduces further branching when ambiguity is re-
vealed. In conclusion, the DJSCD explores a set of sequen-
tial decoding attempts, each one represented by a different
state of the sequential arithmetic decoder. Given a root de-
coder stateχ(Cj−1

0
,Xi−1

0
), obtained by assuming the firstj

codeword bitsCj−1

0
= [C0, . . . , Cj−1] and corresponding to

X
i−1

0
= [X0, . . . , Xi−1] decoded source symbols, two types

of branching may occur.

1. Bit-driven branching: two alternative attempts corre-
sponding to the statesχ([Cj−1

0
, Cj = 0],Xi′−1

0
) and

χ([Cj−1

0
, Cj = 1],Xi′′−1

0
) can be performed by ex-

tending the decoding to the next codeword bit; this
branching occurs only if the root state represents a de-
coder whose sequential decoding was interrupted as a
consequence of the limited numerical precision carried
by the firstj bits of the codeword.

2. Symbol-driven branching: two alternative attempts cor-
responding to the statesχ(Cj−1

0
, [Xi−1

0
, Xi = 0]) and

χ(Cj−1

0
, [Xi−1

0
, Xi = 1]) are obtained by making a de-

cision on the next source symbolXi; such branching is
admissible only if the root state has terminated with an
ambiguous decoding for thei-th source symbol.

Finally, by using an additive MAP metric and a sequen-
tial search algorithm the most likely decoding path, which
consumes all the codeword bits and corresponds toL source
symbols, is selected. The MAP metric is evaluated as follows:

P (X|Y,R) = P (X|Y,C)P (C|R) ≈ P (X|Y,C)
P (R|C)

P (R)
(3)

where in the last equality we neglect the termP (C), i.e. we
assume that all the codewords are equally likely. This hy-
pothesis follows from the observation that arithmetic coding
yields a codeword withP (Ci) ≈ 0.5. The metric (3) can be
recast into an additive metric in the logarithmic domain. The
termP (X|Y,C) depends on the correlation with the side in-
formation and it is the MAP metric used in [1] for the DAC.
The termP (R|C)/P (R) depends on the channel transition
probability and can be evaluated as in [5]. The proposed MAP
metric can be updated sequentially for every decoding attempt
adding a correlation term each time a decision on a source
symbolXi is taken and the corresponding channel term each
time a new coded bitCj is tested.

As for the sequential search algorithm, the most viable
approach turns out to be theStack Algorithm (SA), which is

a depth first technique that starts from the root node and al-
ways extends the path with the best accumulated MAP met-
ric one step forward. SA allows one to move in depth along
the tree of the decoding attempts by performing either a bit-
driven or symbol-driven branching. It is worth pointing out
that this sequential search is very innovative in the context of
AC; in fact, in all previous distributed or error resilient AC de-
coder implementations either the symbol-driven or bit-driven
approach have been used separately. A maximum memory
M is used to store previous decoding attempts for backtrack-
ing. As soon as the forbidden symbol is revealed, the corre-
sponding path is dropped. For more details on SA see [5] and
reference therein.

3. EXPERIMENTAL RESULTS

The proposed distributed joint source-channel system has
been implemented and its performance evaluated in the fol-
lowing scenario. The correlated side information is obtained
by means of a binary symmetric channel with a given tran-
sition probability, corresponding to a certain value of the
conditional entropyH(X|Y). The received codewordR is
observed across the additive white Gaussian channel using
binary phase-shift keying modulation with known signal to
noise ratio (SNR)Eb/N0, beingEb the energy per transmit-
ted bit andN0/2 the noise variance. The DJSCD determines
the MAP metric using the demodulated soft values. On the
decoder side we estimate the Frame Error Rate (FER), i.e.,
the probabilityP (X̂ 6= X) and the Bit Error Rate (BER)
achieved by DJSCD. A minimum of104 decoding trials are
performed for each estimate. Due to space limitation, in the
following only the BER will be reported. The simulations are
performed by fixing the coding rater(X ; ǫ, k, f) = r∗ and
using (2) to select the corresponding values ofǫ andk. In
all the reported experiments we usedf = 20 non overlapped
symbols to terminate the arithmetic encoder. The memory
used by SA has been set toM = 2048.

The performance of DJSCD is compared with that ob-
tained by a system based on turbo codes, where distributed
joint source channel coding is achieved by puncturing parity
bits (which is the optimal strategy according to [4]) down to
the desired coding rater∗. We use turbo codes with rate-1

2

generator (31,27) octal (16 states), and employ S-random in-
terleavers. The BCJR algorithm, based on a modified MAP
metric taking into account the side information correlation, is
used at the receiver with 15 iterations.

In Fig. 2 the BER achieved by DJSCD and turbo codes in
the caseL = 200, p0 = 0.5, H(X|Y) = 0.25 bits per symbol
(bps) when settingr∗ = 0.6 bps is shown versus the channel
SNR. 5 choices ofǫ andk, equivalent in terms of the coding
rate, are compared. It can be noted that the proposed solution
is more reliable than turbo codes over a wide range of SNR
values. As an example, whenEb/N0 = 7dB the DJCSD
BER is 6 · 10−5 whereas TC yields2 · 10−4. In the same
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Fig. 2. BER in the caseL = 200, p0 = 0.5, H(X|Y) = 0.25
bps,r∗ = 0.6 bps.
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Fig. 3. BER in the caseL = 200, p0 = 0.9, H(X|Y) = 0.2
bps,r∗ = 0.4 bps.

figure we observe that the DJSCD performance depends on
the probability allocation between the forbidden symbol and
the interval overlap. It can be noted that, even in the case
Eb/N0 = 25 dB, which refers to the error free transmission
of C, the forbidden symbol (ǫ 6= 0) is useful. This behav-
ior can be explained by the fact thatµ allows to prune more
decoding paths also in absence of transmission noise, thus
helping to remove the ambiguity introduced with the overlap.
This observation paves the way to further research in the area
of DAC [1], where the use ofµ has never been taken into
account.

Fig. 3 and Fig. 4 show the BER in the case of a compress-
ible X with p0 = 0.9, H(X|Y) = 0.2 bps andr∗ = 0.4 bps,
for L = 200 andL = 1000. Comparing Fig. 2 and Fig. 3
one can notice that the gain of DJSCD with respect to turbo
codes is more evident in the casep0 = 0.9. Finally, in Fig. 4
the gain of DJSCD turns out to be much more limited because
the error correction performance of the turbo codes improves
for larger block lengths.
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Fig. 4. BER in the caseL = 1000, p0 = 0.9, H(X|Y) = 0.2
bps,r∗ = 0.4 bps.

4. CONCLUSIONS

We have presented a distributed joint source-channel cod-
ing scheme based an AC with sequential decoding, and a
sequential decoder that merges the bit-driven and symbol-
driven approaches. Experimental results show that the pro-
posed scheme outperforms turbo codes at short block lengths,
and is even at medium block length. Moreover, the decoder
design gives insight on how to improve the DAC performance
in the case of error-free transmission exploiting the forbidden
symbol.
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