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ABSTRACT

Moving objects are usually detected by measuring the ap-

pearance change from a background model. The background

model should adapt to slow changes such as illumination, but

detect faster changes caused by moving objects. Particle fil-

ters do an excellent task in modeling non parametric distribu-

tions as needed for a background model, but may adapt too

quickly to the foreground objects.

A persistent particle filter is proposed, following bacte-

rial persistence. Bacterial persistence is linked to the random

switch of bacteria between two states: A normal growing cell

and a dormant but persistent cell. The dormant cells can sur-

vive stress such as antibiotics. When a dormant cell switches

to a normal status after the stress is over, bacterial growth

continues.

Similar to bacteria, particles will switch between dormant

and active states, where dormant particles will not adapt to

the changing environment. A further modification of particle

filters allows discontinuous jumps into new parameters en-

abling foreground objects to join the background when they

stop moving. This can also quickly build multi-modal distri-

butions.

Index Terms— Object detection and tracking, Tracking

filters, Background model, Particle filter

1. INTRODUCTION

Background subtraction is a common approach to extract

moving objects from a video sequence, and is a fundamental

step in many video surveillance applications. Each pixel in

a new frame is compared against a background model, and

is recognized as a foreground object if it differs significantly

from the background model.

Simple background models such as [1] assume that the

color at each pixel over time can be modeled by a unimodal

distribution. However, this assumption fails when the scene

contains background motion, such as trees moving in the wind

or ripples on water, and when the camera is shaking.

Non stationary backgrounds have been estimated by the

Mixture of Gaussians (MoG) technique [2, 3, 4]. The Gaus-
sians’ parameters are modified at each time step to reflect the

changes in the scene. If the adaptation of the Gaussian pa-

rameters to the changes is fast, slow objects can be absorbed

into the background model. When the adaptation is slow the

model has trouble detecting fast changes to the background

such as those produced by illumination change [5].

Modeling the background distribution with histograms is

a simple, yet robust, technique [6]. Pixel histograms are non

parametric and can account for any type of multi-modal dis-

tribution. However, the number of bins l in the histogram

is fixed and this value can greatly influence the results de-

pending on the video being processed. Moreover, this tech-

nique does not scale gracefully. To model color videos the

histogram will contain l3 bins in RGB space, which produces

histograms that are large and sparse. Addressing this problem

by decoupling the channels and using 3 separate histograms

reduces the memory required to 3l bins but can cause classi-

fication errors.

In [7] Kim et al. outline a non parametric, compressed

representation of the distribution using a codebook model.

The model is built using a long training period where it is

assumed that no objects are in the scene.

A Persistent Particle Filter has the ability to model arbi-

trary multi-modal distributions, and thus can handle repetitive

background movements and illumination changes. Memory

needs scale easily to 3D color space, without making inde-

pendence assumptions that sacrifice accuracy, and no training

period without moving objects is needed.

2. BACKGROUND MODELS BY PARTICLE FILTERS

In this section we describe a naive use of Particle Filters for

background modeling. in Sec. 3 we analyze its deficiencies

and describe improvements that make Particle Filters more

useful for background modeling. As space precludes a de-

tailed description of Particle Filters we refer the reader to [8]

for an in depth review.

Particle Filtering is a technique for estimating the hidden

state Xt of a dynamical system at each time t, conditioned

on sensor measurements. The goal of the Particle Filter is to
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estimate the posterior probability density over the state space

by using a set of samples (particles) of the state xi
t. Each

such sample is associated with a weight wi
t that indicates the

quality, or importance, of that sample. The set of particles is

described as

Xt = {< xi
t, w

i
t > |i = 1, . . . , N}. (1)

Background modeling uses one particle filter per pixel,

estimating the color distribution of each pixel without making

parametric assumptions. The state of pixel r at time t is the

set Xt(r) where particles are vectors over the RGB space.

Particle Filter’s three recursive stages can be implemented

as follows for background subtraction:

Prediction: For a static camera and a relatively static

background, we define a simple transition function

x̂i
t(r) = xi

t−1(r) +N (0, σ), (2)

where N is sampled from a Normal distribution with mean

zero and standard deviation σ. This allows the model to adapt

to slow background changes, and adds robustness for poor

video quality.

Update: In the update stage, the weight of the i’th particle

of pixel r, xi
t(r), is set according to the particle’s distance to

the current pixel value:

wi
t+1(r) = exp(

−‖x̂i
t+1(r)− It+1(r)‖2∞

2σ2
t (r)

), (3)

where the norm ‖ · ‖∞ uses the largest difference among the

color channels. It(r) is the value of pixel r in frame t, and

σt(r) is the standard deviation of the pixel, calculated by an

exponentially decaying window:

μt(r) = α · μt−1(r) + (1− α) · It(r) (4)

σ2
t (r) = α · σ2

t−1(r) + (1− α) · (It(r)− μt(r))
2 (5)

In all our experiments we used α = 0.99.

Re-sample: Re-sampling is done using a low variance

sampler [8]. The low variance sampler uses N equally spread

samples whose phase is determined by a single random draw.

2.1. Probability map and segmentation

The background probability of each pixel can be computed

from its particle set using an average of the strongest parti-

cles. First, the particles are sorted according to their weights

in descending order. Averaging the best particles is done by

Pb(r) =
1

K

K∑

i=1

wi(r) (6)

Where wi(r) are the sorted particles with weights as defined

in Eq. (3), and K = 0.75N .

Foreground segmentation is achieved by thresholding the

probability map Pb by a predefined value P

Foreground(r) =

{
0 Pb(r) < P

1 otherwise
. (7)

We used P = 0.3 in all our experiments.

3. PERSISTENT PARTICLES

Particle Filters usually require a large number of particles in

order to accurately model complex distributions. For a back-

ground modeling algorithm to be practical, the amount of

memory used should be minimal, and thus we need to limit

the size of the particle set. In the following we outline how to

overcome the difficulties introduced by using a small amount

of particles.

3.1. Dormant Particles

A Typical scene for surveillance cameras can involve a num-

ber of challenges that any background subtraction algorithm

needs to cope with. These include dynamic background areas

such as moving trees, shaking cameras, and foreground ob-

jects that may fuse into the background, like a car pulling into

a parking space and staying there. The algorithm should be

able to differentiate the latter from another scenario in which

the car only pauses for a while (for instance while waiting

for a traffic light) and then moves on. These types of sce-

narios emphasize the multi-modal nature of the background

scene. While Particle Filters can represent arbitrary distribu-

tions this can require a large number of samples. When using

only a small particle set, the re-sampling stage can cause one

good particle (a particle whose color is close to the current

color of the pixel) to drastically change the entire set, collaps-

ing it into a unimodal representation. This is known as the

Loss of Diversity problem. To address these issues we intro-

duce Persistent Particles, particles which keep their estima-

tion even when the rest of the sample population has shifted

to a different region of the state space.

This is inspired by the behavior of microbial population.

Bacteria switch randomly between two states: (i) a state of

normal growth; (ii) a dormant state with reduced vulnerabil-

ity to stress (e.g. antibiotics), enabling survival under stress

condition where active bacteria do not survive [9].

We propose to divide the particles into two subsets: Active
particles and dormant or Persistent particles. Particles switch

from active to persistent and vice versa when certain condi-

tions are met. A particle is considered active if its current

estimate of the background color (its RGB-vector) is close to

the current pixel value. Otherwise it is considered persistent.

Persist(x(r)it) =

{
1 exp(

−‖xi
t(r)−It(r)‖2∞
2σ2

t (r)
) < P

0 otherwise
, (8)
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where P is the probability threshold as used in Eq. (7).

Active particles behave as described in Sec. 2. Persistent

particles have a different prediction step, and don’t participate

in the re-sampling stage. For a persistent particle x(r)it the

prediction process is

x̂(r)it+1 =

{
I(r)t+1 p < T1

x(r)it else
, (9)

where p is a uniform random number in [0, 1] and T1 is the

persistence threshold which indicates the duration in which

particles remain in the dormant state. In our experiments we

used T1 = 1/1000, implying that each particle has a 1/1000
probability to switch to the observed color.

Examining the parking car example we can now under-

stand the effect of these persistent particles. When a car en-

ters the scene, the particles, tracking the background color,

will switch into the dormant phase and thus will not track the

color of the car even when it stops at the traffic light. When

the car parks, the particles will gradually switch into active

state and will start following its color distribution and even-

tually merge it into the background. The amount of time for

a stopped foreground object to merge into the background is

determined by the value of T1.

3.2. Color Jump For Scene Change

While the persistent particles ensure the multi-modal behav-

ior of the sample population, it can take a significant amount

of time, in the order of 1/T1 for the population to achieve

a good representation of the pixel’s histogram. When faced

with a continuous, high frequency, change in the background,

such as moving trees, we would like the filter to adapt quickly

to the dynamic nature of the pixel. To handle such cases we

give a pixel the ability to switch one particle to the changing

scene. But such changes must be separated in time by enough

frames. A particle (either active or dormant) is selected ran-

domly and its value is switched to the current color if

‖It(r)− It−1(r)‖∞ > T2, (10)

where in our experiments we use T2 = 30. At least 10
frames should separate two such switches. This allows for

quick adaptation of the filter for dynamic textures without

contaminating the particle set by passing objects. Due to the

particles’ jump ability, the particle set can adept quickly to

such changes and hold the various colors that repeat in the

background. Fig. 1 shows a scene in which trees are mov-

ing in the wind. It shows how the particle set successfully

reproduce the background distribution.

It should be noted that in this section we address signif-

icant changes between successive frames, while in the han-

dling of the dormant particles we examine differences be-

tween a particle and the latest frame.

Fig. 1. Estimation of background distribution in dynamic

backgrounds, such as trees moving in the wind. Using the

particle’s jump ability, the particle set can quickly represent

the various background colors. The pixel marked by a circle

displays both wall and tree colors, as captured by its particles.

4. EXPERIMENTS

Our algorithm was tested on numerous video sequences. In all

our tests we assigned T1 = 0.001 (Eq. 9), T2 = 30 (Eq. 10),

P = 0.3 (Eq. 7), and α = 0.99 (Eq. 4). The particle sets

contained 20 particles, which were initialized by the result

of averaging the first 100 frames of the sequence. We did

not require that these frames be without moving objects. For

color videos of size 320× 240 it runs at approximately 8 fps.

We compare our results with the MoG algorithm [2] and

the codebook technique [7], both as implemented in OpenCV

[10]. For the Codebook algorithm we used a 100 frame train-

ing period. For the MoG we used 5 Gaussian kernels. We also

implemented the histograms method [6]. To reduce compu-

tation we used three color histograms quantified to 32 colors

in each channel, and did not use the spatial neighbors of a

pixel. We used an α value of 0.999 for the histogram method.

This is equivalent to our T1 value which controls the speed

at which foreground objects can be assimilated into the back-

ground model.

In our comparisons we did not use any post processing

techniques, such as morphological operations, in order to

make it easier to judge the capabilities of each algorithm.

Fig. 3 shows frames from a number of different video se-

quences, and the results of the four algorithms on them1.

Bacteria-Filters seems to perform best, and the histograms

method second best.

Foreground objects that stop and later on resume motion

can pose a problem for many background modeling algo-

rithms. Ideally the algorithm should retain knowledge of

the background colors that are occluded by the object so that

when the object continues its movement it won’t miss classify

the background as a new object. If however the foreground

object remains unmoving eventually the algorithm should as-

similate it into the background model. Fig. 2 illustrates how

1The authors thank the ViSOR repository, and Institut für Algorithmen

und Kognitive Systeme for providing some of the videos presented.
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Fig. 2. The particle set gradually adjusts to the new colors

of a stopped foreground object allowing accurate segmenta-

tion. Results are ordered left to right, top to bottom: Bacteria-

Filters, Histograms, Mixture of Gaussians, Codebook.

the particles’ ability to switch into the persistent form solves

this problem. It shows a car pulling into a parking space

(Fig 2A), wait for a while (Fig 2B), and pull out (Fig 2C). As

can be shown, the particle set gradually integrates the car’s

colors into the background model. When the car exits, the set

holds information on both the car and the road, and so is able

to correctly segment the scene. As the sequence continues

more particles shift into tracking the car colors, and so if it

had stayed it would have been merged into the background.

5. DISCUSSION

In this paper, a novel background modeling technique has

been introduced. Our algorithm is based on the well known

Particle Filter framework which has been shown to be a robust

and efficient technique for many applications. We have mod-

ified this framework, allowing particles to become persistent,

or dormant, and thus avoid being replaced due to a few outlier

measurements, and a jump ability which enables particles to

adapt quickly to multi modal distributions. It was shown that

this technique can accurately model the background color dis-

tribution even when faced with repetitive background move-

ment, multi modal backgrounds and illumination changes.

Fig. 3. Examples of foreground segmentation. From left to

right: Input frame, Bacteria-Filters, Histograms, Mixture of

Gaussians, Codebook.
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