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ABSTRACT

This work presents a novel background-foreground classification
technique based on adaptive non-parametric kernel estimation in
a color-gradient space of components. By combining normalized
color components with their gradients, shadows are efficiently sup-
pressed from the results, while the luminance information in the
moving objects is preserved. Moreover, a fast multi-region itera-
tive tracking strategy applied over previously detected foreground
regions allows to construct a robust foreground modeling, which
combined with the background model increases noticeably the
quality in the detections. The proposed strategy has been applied to
different kind of sequences, obtaining satisfactory results in complex
situations such as those given by dynamic backgrounds, illumination
changes, shadows and multiple moving objects.

Index Terms— Non-parametric modeling, background, fore-
ground, segmentation, normalized components, gradients, tracking

1. INTRODUCTION

Nowadays, the increased computational speed of processors enables
new applications of vision technology in several fields [1]: video-
surveillance, monitoring, people motion analysis, human-machine
interaction, and video coding based on objects (MPEG-4). In these
applications, the detection of unusual motion is a key step for high
level object analysis tasks such as object detection, tracking, classi-
fication, and event analysis.

Background subtraction techniques are commonly used in order
to achieve high sensitivity in the detection of moving objects with the
lowest possible number of false alarms rates. These techniques try to
efficiently estimate a background model from a temporal sequence
of images, and can be evaluated according to different criteria: speed
(computational cost), memory requirements, and accuracy.

Some approaches aim to maximize the speed and to reduce the
memory requirements, hence, they are suitable for short sequences
where no important changes occur [1]. Nevertheless, these methods
are not efficient in the presence of noise, illumination changes, and
non-static backgrounds (containing rain, trees, flags, etc.).

To solve these limitations many multimodal methods have been
developed throughout the last years. These methods are able to
model more than one state for each pixel, classifying correctly as
background objects the elements with cyclic movements. One key
reference is the Mixture of Gaussians (MoG) model proposed by
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Stauffer and Grimson [2], widely used for tasks such as object de-
tection and tracking [3]. This model makes use of a combination
of Gaussians to obtain an adaptive model of each one of the pixels.
Other techniques try to model the background variations by repre-
senting the changes in the scene with different states (day or night,
sun or rain, etc) making use of Hidden Markov Models (HMM) [4].

While these techniques solve some complex situations with mul-
timodal backgrounds, they have some limitations. MoG are not flex-
ible enough to model complex density functions since they typically
require the maximum number of components in the mixture in ad-
vance. Additionally, they are noticeably slow when more than 5
Gaussians are used to model each image pixel. As for HMM, it is
difficult to select an appropriate model, the initialization is complex
and, moreover, they include a slow training system.

More recently, non-parametric approaches methods have been
proposed to tackle the background subtraction problem in environ-
ments where background statistics at the pixel level cannot be de-
scribed parametrically. These do not consider the values of the pixels
as a particular distribution, and build a probabilistic representation
of the observations using a recent sample of values for each pixel
[5] [6] [7]. However, the main drawback of these non-parametric
approaches is that, for each pixel in each frame, the average of all
the kernels centered at each sample should be computed, resulting
in very high memory and computational requirements [6]. In ad-
dition, the size of a temporal window needs to be specified (bigger
windows can improve the results, but they involve higher memory
requirements and computational cost). Moreover, spatial dependen-
cies are not exploited and the presence of shadows is usually incor-
rectly classified, consequently, decreasing the quality of the results.

In this work, a novel strategy for moving object detection is pre-
sented. Non-parametric background and foreground models are ob-
tained by using an innovative combination of chromaticity and gra-
dients. This combination reduces the impact of shadows in the clas-
sification whereas maintains the importance of the luminance infor-
mation, which would be lost by only using chromaticity information.
Besides, to improve the results obtained by methods based on exclu-
sively a background modeling, here it is proposed a new alternative
to model the foreground. This is based on the update of previously
detected foreground regions, through a multi-region iterative track-
ing algorithm based on Mean-Shift. In this way, robustness against
noise in enhanced and a larger number of pixels are correctly classi-
fied, improving the overall quality of the results. Additionally, high
quality results are obtained in complex situations such as those with
dynamic background or illumination changes.

The paper is organized as follows. Section 2 presents the non-
parametric background model and describes the space of compo-
nents applied to the model. In Section 3 the foreground modeling



and the multi-region tracking algorithm are detailed. Sections 4 and
5 show the results and the conclusions, respectively.

2. BACKGROUND MODEL

2.1. Non-parametric estimation

Let us consider that each pixel, at time ¢, is defined as a d-
dimensional vector x; € R?. The information contained in this
vector is described in section 2.2. Each pixel has an associated
set of neighbor pixels, {x;}]*,, defined by a spatial bandwidth,
0g,, in the T}z previous images. The probability density function
(pdf) that the pixel x; belongs to the image background, 3, can be
non-parametrically estimated as in [7]:
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with the kernel estimator, Kz, defined as:

1 1K( xl) @
IH]z \H=>

where H is a symmetric positive definite d x d covariance matrix
that specifies the “width” of the kernel around each sample point
x. Typically, a Gaussian is chosen as the kernel estimator function,
Kg, due to its continuity, differentiability and locality properties
[6], although other functions can be employed (e.g. triangular, uni-
form, Epanechnikov, etc). In this work, a d-variate Gaussian kernel
function has been used. Therefore, the density can be estimated as:
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The selected covariance matrix, H, is very important for kernel den-
sity estimation [8]. Numerous approaches have been proposed with
different alternatives looking for practical and fast algorithms. In
this work an alternative for adaptive background density estimation,
which is an evolution of that proposed by Mittal in [5], is presented.
Mittal proposes a hybrid density estimator where H is a function of
the sample point, X;, and the estimation point, X:
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where ¥, and X, are the covariance matrices of the sample point
x; and the estimation point x;, respectively. As a fully parameter-
ized H increases the complexity of the estimation [8], the covariance
matrices are chosen for this approach as diagonal matrices contain-
ing the corresponding bandwidth for each dimension:
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thus the density estimation is reduced to:
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Fig. 1.
malized components and gradients. Whiter values correspond to
lower background densities. (a) Original frame, (b) Background log-
negative pdf using only chromaticity components, (c¢) Background
log-negative pdf using chromaticity and saturation, (d) Background
log-negative pdf combining normalized components and gradients.

2.2. Observations - Space of components

The presence of shadows in the scene is very common. Working in
a typical RGB color space, they are frequently wrongly detected as
part of the foreground, resulting in a source of confusion in poste-
riori phases of analysis [6]. To avoid this problem and discriminate
between moving objects and their shadows, the chromaticity (nor-
malized components) can be used:
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where R, G and B are the RG B values observed at a pixel.

Under certain conditions, the normalized components are invari-
ant to illumination changes [5] and they allow shadow suppression
from the foreground objects. Nevertheless, these components have
the disadvantage of losing lightness information. To address these
limitation, some authors [5] [6] add the saturation, s = R+ G + B,
to the pair of normalized components.

Although color and lightness information changes are success-
fully detected by using the normalized components jointly to the
saturation, shadows are erroneously classified again as foreground
areas. To solve this limitation and detect correctly both color and
illumination changes in the proposed strategy, a novel and effective
combination of chromaticity and gradients has been used to con-
struct the non-parametric model. Combining the two normalized
components, their gradients, and the gradient of s, robust and quasi-
illumination invariant results are obtained.

To preserve all the gradient information, both horizontal and ver-
tical components are maintained. Moreover, to exploit the spatial
information of the samples, the concept of spatial persistence, pro-
posed in [8], has been employed adding the coordinates of the pix-
els, (z,y), to the set of chromaticity and gradients. For these spatial
components, a fixed bandwidth, og,, has been selected. Hence, the
proposed feature vector is defined by d = 10 components:

x = (Rn,Gn, hR,,VR,, hG,,vG,, hs, Vs, ,Y) (8)



where h and v are respectively the horizontal and vertical gradients
of chromaticity and saturation, (R, G, s).

While typical color-based systems are susceptible to shad-
ows and rushed illumination changes, gradients are relatively less
affected by changes in the lightness information [1] and can be
combined with color effectively. Moreover, when background and
foreground have the same color, it is difficult to discriminate them.
Therefore, a natural approach to model their characteristics is to use
color combined with gradient. Another obvious advantage is that
gradients provide a higher level of object representation than just the
color components.

Figure 1 shows an example where the background pdf has been
obtained using different sets of components. An object, with color
and gray areas, moves generating variable shadows. Using only the
normalized components, shadows are correctly classified but the re-
sults are not satisfactory in the areas of the moving object without
enough color information. However, although the results are bet-
ter combining chromaticity and saturation, shadows are wrongly de-
tected as foreground. Nevertheless, if saturation is substituted by the
set of proposed gradients, shadows are finally removed. Note that,
in this last case, lightness information is taken into account and the
contrast is much better.

3. FOREGROUND MODEL

Sometimes moving objects show similar colors to those of the back-
ground. In these cases object detection using only background mod-
eling is not sufficient to distinguish between foreground and back-
ground [9]. To address this limitation and to enhance detection in
general, an efficient and novel foreground modeling has been devel-
oped in this work. As will be shown, the combination of this fore-
ground modeling and the previously presented background modeling
yields more accurate detections.

The main contribution to the foreground modeling is the pro-
posal of a multi-region tracking strategy based on iterative approxi-
mations. At each new image, through iterative region-based compar-
isons [10], a search for the previously detected foreground objects is
done. In this way, the coordinates of the foreground information
can be updated along the sequence. This update, maximizes the in-
fluence of the foreground data over the objects they belong to and
reduces their influence in other regions, resulting in an efficient and
robust foreground modeling. Additionally, the estimation of the po-
sitions of the foreground objects reduces the amount of data required
by the model, reducing significantly the memory requirements and
the computational cost.

3.1. Non-parametric estimation

The pdf that a pixel x; belongs to the foreground, ®, can be ex-
pressed as a mixture of a uniform function and a kernel density func-
tion [8] as:
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where K7, is a multi-dimensional kernel function similar to the one
defined for the background model in (6), M is the number of data,
Hg is the foreground bandwidth matrix, o << 1 is the mixture
weight, and ~ is a random variable with uniform probability in the
components defined for the feature vector. A fixed bandwidth, os,,
has been selected for the spatial components and a bandwidth se-
lection, similar to that presented previously for the background, has
been used for the color and gradient components.
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Fig. 2. Foreground modeling. (a) Reference frame, (b) Current
frame, (c) Reference foreground regions with their associated mo-
tion vectors, (d) Current foreground probability density function.

3.2. Tracking

Let us consider a foreground region, corresponding to a moving ob-
ject detected at instant ¢. All the pixels of this region will be used
to construct the foreground model as defined in (9) along the T
following images. Usually, color and gradient information of this
region will maintain similar values along the next images, thus al-
lowing to obtain adequate foreground models. Nevertheless, as the
position of the object is changing with time, the selected spatial
bandwidth, os_, should be high enough to cover the current po-
sitions of the moving region, increasing noticeably the amount of
used information. Moreover, other regions (static or not) that contain
similar information to the foreground object could be undesirably af-
fected by the data. In order to avoid these limitations and to increase
the influence of the data over the objects they belong to, in the pro-
posed model the spatial positions of the moving objects are updated.
From each image to the following one, their displacement is obtained
through an iterative tracking strategy based on Mean Shift [10].

For each one of the regions to be tracked, a target model rep-
resented by a probability density function in the feature space con-
formed by color and gradients, ¢, is defined. In addition, similar
candidate models, p(x, y), which depend on their spatial coordinates
(z,vy), are defined in the current image. To find the location of the
foreground regions in the current image, the distance between tar-
get and candidates models should be minimized. This distance is
defined as:

d(z,y) = v1-pBy),9 (10)
where p [p(z,y), 4] is the Bhattacharyya coefficient between § and
p(z,y).

The main difference between the strategy presented in [10] and
that proposed here is that the target model is constructed using only
foreground information. Thus, the accuracy in the motion estimation
is increased, not including background information in the model.

Figure 2 illustrates the abovementioned concepts. The image
at time ¢ — 1 is shown in (a) and the image at time ¢, in (b). The



foreground regions of image at ¢ — 1 are shown in (c) joint with
their associated motion vectors computed with the described track-
ing strategy. These motion vectors are used to compensate the dis-
placement between regions in these two consecutive frames in order
to build the foreground model. Finally, (d) depicts a 3D visualiza-
tion of the resulting foreground pdf, where, as observed, the higher
values correspond to the pixels belonging to the moving objects.

4. RESULTS

The proposed moving object segmentation strategy has been tested
on different kinds of video sequences containing critical aspects,
such as multiple moving objects with significant gray level areas and
similar to background objects, shadows, background with non-static
objects (trees, water...) and illumination changes.

A buffer of T3 = 120 images and a spatial bandwidth of og, =
16 pixels have been used to model the background. In the case of
the foreground model, the update of the spatial information allows
to select a lower buffer and a lower spatial bandwidth, providing
satisfactory results with T = 10 images and oz, = 4 pixels.

Figure 3 shows some results that compare the classic Mixture
of Gaussians method (using 5 Gaussians per pixel in a RGB color
space) with the proposed non-parametric strategy. The first column
of images corresponds to an indoor sequence where the most critical
aspects are the shadows and the similarity between some area in the
moving object and the background. In the rest of columns, different
outdoor scenarios, which contain non-static background elements,
are presented. In the results obtained through the proposed algo-
rithms, the total number of pixels correctly classified is much better,
while the number of false detections is drastically reduced. These
improvements are more noticeably in situations such as illumination
changes or scenes with non-static background. Moreover, the com-
bination of gradients and chromaticity results in a enhanced clas-
sification where shadows are practically removed. The foreground
model addition results in an improved moving objects segmentation
where the foreground regions are more compact and accurate. In
the case of the last column of images in the figure, results show the
better adaptation of the non-parametric strategy when an important
illumination change occurs.

5. CONCLUSIONS

This paper presents a novel and efficient background-foreground
classification strategy, which delivers high quality segmentations
by combining non-parametric background and foreground models.
The combination of chromaticity and gradients avoids shadows,
which can corrupt the segmentation results, while preserving the
luminance information of the moving objects. The incorporation
of a fast and innovative foreground model, where the spatial in-
formation of the data is updated according to motion information,
reinforces the presence of the moving regions and reduces signif-
icantly the computational requirements. This model is obtained
through the application of an efficient multi-region tracking strategy
over previously detected foreground regions.

The described methods have been tested on multiple kinds of
video sequences containing critical aspects such as shadows, dy-
namic backgrounds, or illumination changes. The results show sat-
isfactory classifications where shadows are removed from the de-
tections, foreground regions are compact, and the number of false
positives have been significantly reduced compared to the results ob-
tained with other methods.

Fig. 3. First row: images from the test sequences, second row: re-
sults obtained using the MoG method, third row: results obtained by
applying the proposed background model, last row: results after the
addition of foreground modeling.
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