Robust object detection scheme using feature selection | IEEE Conference Publication | IEEE Xplore

Robust object detection scheme using feature selection


Abstract:

Feature selection is an important issue for object detection. In this paper, we propose an effective wrapper-based feature selection scheme using Binary Particle Swarm Op...Show More

Abstract:

Feature selection is an important issue for object detection. In this paper, we propose an effective wrapper-based feature selection scheme using Binary Particle Swarm Optimization (BPSO) and Support Vector Machine (SVM) for object detection. In our algorithm, Scale-Invariant Feature Transform (SIFT) descriptors in a patch around the keypoints are extracted as the initial feature representations. The initial feature set is fed into the feature selection module in which the BPSO searches the feature space, and a SVM classifier serves as an evaluator for the performance of the feature subset selected by the BPSO. We tested the proposed detection scheme on the UIUC car dataset and our results show that feature selection scheme not only improves the detection accuracy but also enhances the detection efficiency.
Date of Conference: 26-29 September 2010
Date Added to IEEE Xplore: 03 December 2010
ISBN Information:

ISSN Information:

Conference Location: Hong Kong, China

Contact IEEE to Subscribe

References

References is not available for this document.