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Abstract—We investigate an intrinsic and useful form of
sparsity of color images that was largely overlooked in the
literature of image/video processing. This sparsity of multispec-
tral images is revealed and formulated by modeling the image
formation process. The underlying new sparse representations of
color images are general and can be exploited to improve the
performance of existing image restoration algorithms, such as
denoising, deblurring, and resolution upconversion.
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I. INTRODUCTION

Most digital images and videos are multispectral, having
at least three color bands (typically red, green and blue). In
natural scenes, most light sources have a continuous spectrum,
most objects have a uniform surface material of a certain
reflectance and the surface curvature is quite small. As such,
different spectral bands of the image signal have high correla-
tions. This research is concerned with sparse representations
of multispectral images. The subject is of significance and
utility because a wide range of tasks in image processing and
computer vision are performed with the assumption, either
explicitly or implicitly, that the underlying image signal is
sparse.

Recent years have seen a great deal of renewed interests,
enthusiasm and progress in sparsity-based image processing,
particularly in image restoration. However, quite surprisingly,
most published algorithms for image processing and analysis
based themselves on the sparsity of luminance component of
the image signal and overlooked the sparsities induced by
spectral correlations. This leaves a slack in the performance of
these algorithms. Mairal et. al extended the K-SVD algorithm
[1] to color images in the searching of a dictionary based
sparse representation of color images [2]. In this paper, to
pick up the performance slack we investigate ways to for-
mulate spectral correlations into inherent and computationally
amenable sparse representations of multispectral images. Our
investigation begins with an image formation model of digital
color cameras. This image model and mild assumptions on
illumination conditions and imaged objects reveal intrinsic
sparsity properties of natural images. It turns out that these
sparsities have simple, linear representations that are weighted
sum of different spectral bands. This discovery allows the
newly revealed sparsities of color images to be readily ex-
ploited by an `1 minimization process, or by linear program-
ming algorithmically. Upon the conclusion of our technical
development, it will become self evident how the new results
of this paper can be integrated into the general framework of

image restoration and used as strong domain knowledge to
improve the solution of the corresponding inverse problem.

The remainder of the paper has the following flow of pre-
sentation. The image formation model is reviewed in Section
II, which leads to the sparse representation that is detailed
in Section III. Typical applications of color image denoising
and deconvolution are investigated in Section IV. And finally,
Section V concludes the paper.

II. IMAGE FORMATION MODEL

A multispectral camera records the light reflections of a real
world scene. We model the light reflection from the surface
of an object by a spectral reflectance function. The surface
is associated with a non-negative and bounded reflectance
function fu,v(λ), where (u, v) denotes the point on the surface
that is projected to pixel (u, v), and λ is the wavelength. When
this surface point is illuminated by a light source with spectral
distribution L(λ), the spectral distribution of the reflected
light, as observed by the camera, is given by L(λ)fu,v(λ).

A digital multispectral camera or scanner is equipped with
sensors of K different types, K ≥ 3, each measuring a differ-
ent spectral sub-band. In consumer electronics, for instance,
three spectral subbands, red, green and blue, are commonly
used. Type k sensor has its spectral response function γk(λ),
1 ≤ k ≤ K. Therefore, the sample value in spectral subband
k at pixel position (u, v) is given by

xk(u, v) =

∫
Λ

γk(λ)L(λ)fu,v(λ)dλ (1)

where Λ is the spectral range of the camera.

Fig. 1. Illustration of image formation.



The reflectance function fu,v(λ) is determined by two
factors: the material and the geometry of the object surface,
and it is empirically modelled as

fu,v(λ) = gu,v(α, β, η)ru,v(λ). (2)

The term r(λ) ∈ [0, 1] is the reflectance coefficient of the
surface material for wavelet length λ, which is independent of
surface geometry properties (e.g., curvature and smoothness).
The variations in the 2D image of an object in spectral
subband k are mostly caused by interactions between the light
source L(λ) and surface geometry. These interactions can be
satisfactorially approximated by

gu,v(α, β, η) = cosα+ η cosn β. (3)

The first term cosα accounts for Lambertian diffuse reflection
[3], with α being the angle between the incident light L and
the surface normal; the second term η cosn β approximates
specular reflection [4], where β is the angle of the reflection
ray recorded by the camera at pixel positive (u, v) with the
mirror direction of the incident angle (see Fig. 1), and the
parameter η ∈ [0, 1) is specular coefficient and n > 1 is the
degree of surface shininess.

III. SPARSE REPRESENTATIONS OF SPEC-CORRELATION

It follows from (1), (2) and (3) that for each subband

xk(u, v) = (cosα+ η cosn β)

∫
Λ

γk(λ)L(λ)ru,v(λ)dλ. (4)

For an object surface S consisting of a uniform material
of a fixed ru,v , the term

∫
Λ
γk(λ)L(λ)ru,v(λ)dλ remains a

constant for all pixels (u, v) ∈ S on the surface. The 2D
waveform of the subband image xk corresponding to S is
determined by the leading term (cosα+ η cosn β).

First, consider non-specular surfaces (i.e., zero or very small
η), which is by far the most common case. Then the dominant
term in (cosα+η cosn β) is cosα. For the light coming from
far away (e.g., sun light) and a flat surface S, the angle α
is constant everywhere on S. And for a nearby point light
source or a surface of small curvature, the angle α changes
slowly and smoothly on the surface. Since cosα can be well
approximated by a linear function if α varies in a relatively
small range, the subband image xk can therefore be modeled
well by 2D piecewise linear function in the spatial domain.
Next we examine specular surfaces that exhibit highlights,
for which η ≈ 1 and n � 1. Now the dominant term in
(cosα + η cosn β) becomes η cosn β. We note that cosn β
can be approximated by two segments of linear function that
join at β = 0. Therefore, the spectral band image xk can
still be approximately by piecewise linear functions in areas
of specular reflections. Summarizing above discussions we
conclude that any subband image can be modeled by 2D
piecewise linear functions in general, or even by piecewise
constant functions on flat surfaces illuminated by distant lights.
Consequently, the Laplacian function ∇2xk, 1 ≤ k ≤ K,
offers a natural sparse representation of the spectral band
image xk.

For each spectral band image, at object boundaries the
function ∇2xk still takes on large nonzero values due to the
change of surface materials and/or discontinuities in surface
geometry. But we can largely eliminate these large values
and create a much sparser representation than each individual
Laplacian function ∇2xk, 1 ≤ k ≤ K, by exploring the
spectral correlations. Indeed, it follows from (4) that the ratio
between any two spectral bands xj and xk, xk 6= 0

xj(u, v)

xk(u, v)
=

∫
Λ
γj(λ)L(λ)ru,v(λ)dλ∫

Λ
γk(λ)L(λ)ru,v(λ)dλ

(5)

is constant over pixels (u, v) ∈ S. By factoring out the
effects of surface geometry, the ratio image zj,k = xj/xk

formed by pixelwise division can be approximated by a 2D
piecewise constant function. Consequently, the first derivatives
∇zj,k of these ratio images, j 6= k, 1 ≤ j, k ≤ K, yield
O(K2) sparse representations of the multispectral image x.
However, one needs to excise caution if attempted to use the
piecewise constant model of ∇zj,k in restoration or estimation
of x. First, ∇zj,k can be numerically unstable due to the
risk of division by zero or very small values; second, the
nonlinearity of function zj,k makes the `1 minimization of
∇zj,k computationally very expensive, if not impossible.

To overcome the above difficulties we seek for a linear form
of sparse representation of x. By the image formation model
of (1) and subsequent discussions, we have∑

1≤k≤K

akxk(u, v) = (cosα+ η cosn β)F (u, v) (6)

where ak’s are the weights and

F (u, v) =

∫
Λ

[
∑

1≤k≤K

akγk(λ)]L(λ)ru,v(λ)dλ. (7)

It is easy to see that F (u, v) is a constant over all pixels
(u, v) ∈ S, as long as surface S consists of a uniform material.
Therefore, any linear combination of xk, 1 ≤ k ≤ K can be fit
to a piecewise linear function, whose Laplacian yields a sparse
representation of the multispectral image. But we will strive
for an even stronger sparsity next. Without loss of generality,
for x1 6= 0, defining

bk =
xk(u, v)

x1(u, v)
=

∫
Λ
γk(λ)L(λ)ru,v(λ)dλ∫

Λ
γ1(λ)L(λ)ru,v(λ)dλ

, 1 ≤ k ≤ K, (8)

which is a constant for all pixels (u, v) ∈ S, we have
K∑

k=1

akxk(u, v) =

K∑
k=1

akbkx1(u, v). (9)

For a pixel location (u, v), x1(u, v) is a fixed value. By
letting ak = 1/bk, 1 < k ≤ K, and substituting it into
(9) we have

∑K
k=1 akxk(u, v) = Kx1(u, v). And by setting

a1 = 1 − K, we further have
∑K

k=1 akxk(u, v) = 0. In
other words, such weights exist under which the corresponding
linear combination of K spectral bands is an all-zero 2D signal
within surface S. If we can compute bk for each surface S,
then the linearly combined signal s =

∑K
k=1 akxk with locally



Fig. 2. Example of using the proposed method in image denoising. First row, from left to right: original ‘Montreal’; Noisy, σ = 30, PSNR=19.33 dB;
BM3D denoised, PSNR=26.38 dB; Restoration for B3DM with proposed algorithm, PSNR=27.06 dB. Second row, from left to right: original ‘Barbara’;
Noisy, σ = 35, PSNR=17.44 dB; BM3D denoised, PSNR=29.06 dB; Restoration for B3DM with proposed algorithm, PSNR=29.97 dB

adaptive weights: a1 = 1 − K, ak = 1/bk, 1 < k ≤ K,
can be made all zero even at the object boundaries. This
construction offers the sparsest representation of multispectral
images known thus far. Operationally, however, γ(λ), L(λ)
and r(λ) are generally unknown, direct computation of the
ratios bk with (8) is difficult. But we can estimate the desired
weights by setting a1 = 1−K and solving the following linear
least square problem

min
a2,a3,··· ,aK

‖
∑

(u,v)∈S

K∑
k=1

akxk(u, v)‖2. (10)

IV. APPLICATIONS AND EXPERIMENTAL RESULTS

In this section, we apply the above introduced linear sparse
representations of multispectral images to perform image
restoration tasks. In our experiments color images of red,
green, and blue spectral bands (k = R,G,B) are used. We first
compute the linear weights âR, âG, âB for each pixel (u, v)
by solving (10) using the least square method. Then the linear
combination x = âRxR+âGxG+âBxB should be a piecewise
constant function and therefore its derivative ∇x is a sparse
representation of the the color image signal. Consequently, we
can pose color image restoration as the following constrained
`1 minimization problem:

x̂R, x̂G, x̂B = arg min
xR,xG,xB

{‖∇(âRx̂R + âGx̂G + âBx̂B)‖`1}

s.t. ‖Dkxk − yk‖ ≤ %k, |xk − x̂k| ≤ σk, k ∈ {R,G,B}
(11)

In (11), matrix Dk is the degradation operator for spectral
subband k, k ∈ {R,G,B}, and vector yk is the degraded,

observable version of xk. To further improve the restoration
performance, one can add intraband estimates x̂k’s, if avail-
able, as additional constraints. The terms %k and σk are the
variance of the noise in spectral subband k and the variance
of estimation error of x̂k, respectively.

We demonstrate the efficacy of the new sparse representa-
tions of multispectral images for two of the most common
image restoration tasks: denoising and deconvolution. For
denoising we use the results of BM3D [5] as x̂k’s in (11).
For deconvolution, x̂k’s are the results of the Weiner filter.
In the our experiments σ denotes the standard deviation of
the added white noise while δ is the standard deviation of the
Gaussian PSF used in blurring the original image.

Figs. 2 displays some denoising results of BM3D and the
proposed sparsity-based technique. In these examples, the
latter outperforms the former by up to 0.9 dB. In terms
of visual quality, the new technique is noticeably better. In
particular, BM3D produces visible color distortions, while our
technique is largely free of color artifacts.

As to the application of deconvolution, we show the results
of the proposed technique in comparison with those of Weiner
filtering in Figs. 3. In this case our technique can outperform
the Weiner filter by as much as 1.47 dB. As shown in the
figures, the Weiner is prone to speckle color noises, whereas
our technique is not.

PSNR results of the denoising and deconvolution applica-
tions on more test images are listed in Table I and Table II,
where constant improvements over BM3D and Weiner filtering
help to further justify this type of new intrinsic sparsity
inherited from image-forming process.



Fig. 3. Example of using the proposed method in image deconvolution. First row, from left to right: original ‘Oldmill’; Blurry, δ = 1, PSNR=24.78 dB;
Wiener filtered, PSNR=26.90 dB; Restoration for Wiener filter with proposed algorithm, PSNR=27.78 dB. Second row, from left to right: original ‘Montreal’;
Blurry, δ = 1, PSNR=26.08 dB; Wiener filtered, PSNR=27.12 dB; Restoration for Wiener filter with proposed algorithm, PSNR=28.59 dB.

TABLE I
PSNR RESULTS FOR THE APPLICATION OF IMAGE DENOISING OF THE PROPOSED METHOD.

σ = 30 σ = 35 σ = 40
Images Noisy BM3D Proposed Noisy BM3D Proposed Noisy BM3D Proposed
oldmill 19.2771 25.5604 26.5690 18.0592 24.8357 25.8734 17.0208 24.1080 25.1808

montreal 19.3385 26.3870 27.0634 18.1464 25.7265 26.4316 17.1343 25.1278 25.8846
barbara 18.7146 29.9650 30.8075 17.4457 29.0675 29.9796 16.3729 27.8073 28.8455
malight 19.4918 29.0211 29.4611 18.3046 28.3865 28.9347 17.2971 27.7783 28.4662
lgthouse 18.7535 28.6445 29.4496 17.4983 28.0004 28.8589 16.4368 27.3977 28.3376
bluheron 18.7979 28.7249 29.3172 17.5534 28.1141 28.7666 16.4999 27.5227 28.2817

TABLE II
PSNR RESULTS FOR THE APPLICATION OF IMAGE DECONVOLUTION OF THE PROPOSED METHOD.

δ = 1 δ = 1.5 δ = 2
Images Blurry Wiener Proposed Blurry Wiener Proposed Blurry Wiener Proposed
oldmill 24.7812 26.9056 27.7863 22.4223 24.4287 24.5976 21.1402 22.6448 22.6898

montreal 26.0818 27.1248 28.5906 24.0299 25.5091 25.8356 22.9178 24.4251 24.5413
barbara 23.8686 24.1367 24.2762 22.7333 22.9080 22.9139 22.4870 22.8384 22.8582
malight 27.7038 28.8218 30.0731 25.4045 27.5750 27.7854 24.0581 25.9088 25.9294
lgthouse 28.7066 29.7772 31.3057 26.5416 28.6832 29.0584 25.1658 27.2509 27.3446
bluheron 29.3096 29.1313 30.7153 27.5564 29.3128 29.7061 26.3600 28.3868 28.4257

V. CONCLUSION

A new form of intrinsic sparsity for color images is in-
vestigated in this work. This sparsity is deduced from the
formation process of multispectral images and study shows
that it can be represented as weighted sum of differences
between spectral bands. This type of sparsity can be integrated
into a general framework of color image restoration. As
examples, we describe two typical applications in color image
denoising and deconvolution. Substantial visual and PSNR
improvements over benchmark methods verify the efficacy of
this new sparse representation for color images.
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