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Since DCT is an orthogonal transform, selective encryptibn
DCT coefficients was believed to be secure until Ueleral. [7]

A general method for recovering missing DCT coefficients inreported that missing DC coefficients can be approximatetpv-
DCT-transformed images is presented in this work. We mduel t ered from AC ones. The method proposedin [7] was improved by

DCT coefficients recovery problem as an optimization prnobénd
recover all missing DCT coefficients via linear programmifithe
visual quality of the recovered image gradually decreasetha
number of missing DCT coefficients increases. For some ismage
quality is surprisingly good even when more than 10 mostiagmt
DCT coefficients are missing. When only the DC coefficientissmn
ing, the proposed algorithm outperforms existing methedsmaling
to experimental results conducted on 200 test images. Tdpoped
recovery method can be used for cryptanalysis of DCT baded-se
tive encryption schemes and other applications.

1. INTRODUCTION

As a sub-optimal de-correlation transform, the discresrmtrans-

form (DCT) [] is one of the most widely used transforms in-sig

nal and image processing applications, especially lossjoaim-

age and video compression. Many mainstream multimediangodi

standards, such as JPEG, MPEG-1/2/4 and H.264/AVC, aredouil
top of DCT. To reduce computational complexity, DCT is noligna

performed onN x N blocks for digital images and videos. Since

DCT is a good de-correlation transform, all non-zero quadiDCT
coefficients in each image block are coded to allow recouyettie
original image/video with a desired level of visual qualifjhe re-
maining correlation between adjacent image blocks is nibyrhan-
dled by differential coding of DC coefficients or more consplied
intra predictive coding mechanisnis [2].

Among all DCT coefficients, the first one (called the DC coef-

ficient) contains the most energy as well as perceptualrimdition

of an image block. Roughly speaking, the further a DCT caieffic
is from the DC coefficient, the less perceptual informati®nepre-
sented by it. Since DCT coefficients of each image block agelg
uncorrelated, all DCT coefficients of a block can be considaas
separate “quality layers” with different significance. Byp®iting

this fact, some researchers proposed to implement pesatepid
cryption of digital images and videos by selectively entiryg part
of DCT coefficients[[3[ 4.]5.16]. For instance, &i al. [4] proposed
to encrypt DC coefficients and sign bits of other DCT coeffitse
(called AC coefficients) to conceal the rough and detailegvsiof
MPEG-encoded video sequences, respectively.
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Li et al. [8], which reduces propagation errors and adopts a better
estimate of the first DC coefficient via under-/over-flow retai-
mization (FRM). Both DC recovery methods are based on two-com
mon properties of digital images. First, there is strongelation
between neighboring pixels. Second, a smaller range of ©e®
efficient of a block can be calculated from the AC coefficienits
the same block. Besides the above two DC recovery methods, Sa
developed a method to recover selectively encrypted D s
bits, where a low-quality version of the original image isju&ed

to support the recovery process. None of the previous wankbea
easily generalized to handle the case when both the DC deeffic
and some AC coefficients are encrypted. It remains an opestiqone
whether a combination of DC/AC encryption is still secure.

In this work, we propose an algorithm to recover an arbitrary
set of missing DCT coefficients (except for the case when &TD
coefficients are missing). It offers a generic framework inick
the DC recovery problem becomes a special case. To the best of
our knowledge, this is the first time that a solution is depetbto
tackle such a generic and challenging problem. Simply spgak
we model the DCT coefficients recovery problem as an optiticiza
problem and use linear programming to solve it. We have cctedu
experiments on 200 test images and shown that the propoged al
rithm outperforms two existing DC recovery methods givefviig]
significantly and consistently. The newly proposed al@onitdoes
not depend on a low-quality version of the original imagestéad,
it attempts to recover missing DCT coefficients solely frdma in-
formation contained in known DCT coefficients. Thus, it does
suffer the limitation reported in [9]. Although the DCT cfiefents
recovery problem is studied in the context of selective ytgon,
the proposed method for solving the problem is actuallyiappibn-
independent and may find potential applications in relatedsasuch
as image/video compression and error concealment.

The rest of this paper is organized as follows. The proposed
method is described in Sdd. 2. Experimental results of areimp
mentation of the proposed method are reported in[Sec. 3 ewier
compare its performance with those obtained by methods| ifi][7
for performance benchmarking. Concluding remarks andéute-
search directions are given in SEL. 4.

2. PROPOSED METHOD

In this section, we first discuss the modeling of the DC reppve
problem after a brief introduction to two existing DC recoveeth-
ods. Then, its generalization to the recovery of an arbjtsat of
missing DCT coefficients is addressed. After setting up tl¢her
matical model, we will study how to solve the optimizatiomiplem
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effectively in terms of low space and time complexity. pairs of neighboring pixel§i, j) and (i, j'). Moreover, this choice
) makes the optimization problem a linear one, which can beesi@f-

2.1. Basic Problem: DC Recovery ficiently. The linearization is done by introducing variegh, ; .
The two DC recovery methods proposed|ih[[7, 8] are based on thior each term of the sum and the optimization problem becomes
following two properties. L
Property 1: The difference between any two neighboring pixels is a minimize > higa g
Laplacian variate with zero mean and a small variance. subjectto (i, 5) — (¢, 4") < hi i i, (3)
Property 2: For each block, the range of pixel values calculated 2(i',§") — (6,5) < hojar v
from AC coefficients constrains the value of the DC coefficien ' T

Property 1 is a well-known feature of most natural imagedavhi and the constraints of EqJ(2).
Property 2 is a result of the relationship between the pied v
ues{z(i,j) € [Tmin, Tmax]}o<i,j<n—1 and the DCT coefficients
{y(k,D)}o<k,1<n—1 as defined byNV x N 2-D DCT itself:

We can derive the implied bourtd< h; ; i/ » < Tmax — Tmin
accordingly. Furthermore, variablg ; ; ;» will be tight at|x (7, j)—
x(i’, ") for the optimum solution. Since the DC value of a block
contributes to all pixels of the same block equally, only faérs

x(i,j) = ZOSk’lSN71 A(2, 5,k 1) - y(k, 1), @ o neighboring pixels that belong to different blocks arkevant.
1 o Hence, we may restrict ourselves to these pairs.
= Ny(()’ 0) + Zoswszv—l A, g, k, Dy (k, 1), The above optimization problem contains a free variableecor
(e D7©0.0) sponding to the global intensity when the dynamic range efop-
where timum solution is smaller thafrmin, max]. In this case, the global
) . intensity can be shifted without changing the value of thiectve.
A(i, j, k1) = C(k)C(1) cos (W) cos (M) , In other words, there are multiple optimum solutions. Wedban
N N this problem by shifting the histogram of the recovered iméce.,

one solution) towards the midpoint Pfimin, max| until the left and

C(k) = /1/N whenk = 0 and/2/N whenk > 0. Inabove, o margins of the histogram are equal.

the DC coefficient, denoted hy(0, 0), is obviously constrained by
the sum term, which is DC-free, af@min, max|. Note also that 2.2. General Problem: Arbitrary DCT Coefficients Recovery

E_q. () is alinear map and the indices are relative to eaatkblve The generalization from DC recovery to arbitrary DCT coédfits
willuse x = A - y to denote the block-wise DCT below. recovery is straightforward. That is, we can fikk, 1) = y*(k, ()
kfor known DCT coefficients while constrain all remaining aokvn
variables in a rang@ymin (¥, 1), ymax(k, 1)] depending on their lo-
cations (.e. spatial frequencies). Note that when at least one AC
coefficient is unknown, pixel pairs inside each block simalt be
discarded as done in the previous case. The above gengoaliza
clearly maintains the linearity of the optimization prable Hence,
we can use thdinear programming(LP) technique to solve both
the basic DC recovery problem and the general DCT coeffigient
covery problem. In our implementation, we adhere to the ggne
problem and treat the DC recovery problem as a special case.

by block and tries to align all DC coefficients to minimize them
of differences of pixel pairs along each block boundary.p@rty 2
is used to estimate the global intensity of the whole imagainM
drawbacks of this method include large propagation ernodssdess
accurate estimate of the global intensity. The improved B¢bv-
ery method in[[8] introduces online pixel under-/over-fleevoval
in the scanning process and an under-/over-flow rate miaitoiz
process to estimate the global intensity more accuratelyile/the
improved method can produce fairly good results for manygiesa
the quality of recovered images is not always high. This caeb
plained by the fact that the scanning process is essentigdgl in ~ 2.3. Solving Optimization Problem

the sense that only two neighboring blocks are consider@at oy 5 theoretical point of view, linear programs can be ebiin

time and cannot always lead to the global optimum solution. time bounded polynomially in the binary encoding lengthta in-
Actually, the DC recovery problem can be formally modeled asy, ;; 4ata using thellipsoid methodL0] or theinterior point meth-
an optimization problem w.r.t. some measure on the reaactsil

X . ods[11]. The latter yields an efficient implementation in pieet
pixel values and be solved to get the global optimum solutie e methods with good practical performance include tireal
use variablex (i, j) andy(k,[) to denote the value of pixél, 7)

- . and duakimplexalgorithm. We refer td[12] for interested readers.
and the DCT coefficientk, [), respectively. Then, the DC recovery  thq | p solution consists of floating point values for the pixe
problem can be written as

values and DCT coefficients. After the optimization, we ruhe

L . ixel values to fixed precision numbers, i.e. to integers: eri-
mlnllmlze f({x(z’j)}ogl’]SNfl) &ental results show?hat the rounding error is neglgi]gibleé':}]ps of
subject to x=A-y, visual quality, so we do not re-optimize after the rounditeps Ad-
Tmin < 2(4,§) < Tmax, 2 ditional integrality constraints for pixel values leadbeger Linear

y(k,1) = y* (k, 1) for all AC coefficients. Programming(ILP), which is NP-hard in general [13]. Whether this

also holds for our application is a topic for further reskarés of
The last equality fixes AC coefficieni(k, ) to its known value yet, we know that the problem remains polynomial time sdkvédr
y*(k, 1) while DC coefficienty(0,0) of each block remains to be the simpler case of DC-only recovery. The reason for thihé t
a variable. Note that the bounds @i, ) and the transformation there is an equivalent formulation as an LP over an integhthpe
constraints imply lower and upper bounds on varial{lé 0). dron for which ILP is not more difficult than LP 14, Chaptel5].

The objective f(-) may be any convex function to allow a ) )

polynomial-time optimization algorithm provided thdt can be 2-4- Complexity Analysis
evaluated in polynomial time. Because of Property 1, we shoo Given ann x m image and/ unknowns in each aB N x N blocks,
Z{(i,j),(i’,j/)}lx(i7j) — z(i,5")|, where the sum ranges over all the mathematical model presents a large-scale optimizptiablem



with 2nm — (n + m) h-variables andJ - B y-variables. Since all
other unknowns can be uniquely determined by these vasatiiey
can be eliminated by a presolve step of the optimizationgs®cFor
the basic DC recovery problem, the number of variables idedt
reduces as only pixel pairs along block boundaries corteibuthe
objective value. Assuming that andm can be divided byV, the
number of variables involved is reducednen/N — (n + m) h-
variables anchin /N2 y-variables.

The worst-case time complexity of the interior point metlffiad
solving LP problems with” variables and with a size df bits is
O(V3L) arithmetic operationd [15]. Here, the problem sizés
the total number of bits needed to store the whole LP inclydle
objective, the constraint matrix and the right-hand sidéhefcon-
straints. For our problem, the value bfis O(nmU) thanks to the
sparsity of the constraint matrix. As a result, the worstectime
and space complexities af¥n*m*U) andO(nmU), respectively.

Since our problem is rather sparse, the running time scaleshm

better in practice as reported in the next Section.

tational time is untractable for low-end computers such@s. Fhis
problem can be partly solved by dividing the whole image Bué

ficiently small patches and the global intensity of diffdrpatches
can be adjusted to minimize the discontinuity along patchnie
aries. Itia also possible to limit the scale of the problenmdgjucing
the number of pixel pairs used in the model. Both measurdsmnwil
evitably compromise the visual quality of the recovereddmaln

this paper, we only consider images that can be directly ledray

the optimization algorithm. The above “divide and conquieiéa
will be a future research topic.

3. EXPERIMENTAL RESULTS

To validate the real performance of the proposed methoc:fmver-
ing multiple missing DCT coefficients, we built an implematidn
based on the commercial optimization software package IB®G
CPLEX 12.2[[16]. More precisely, we used the constraibadier

optimizer(an interior point method) in CPLEX because it turned out 9

to be the most suitable method for our purpose.

We ran the proposed method on 200 test images and evaluatt

the subjective and objective visual quality of the recoddreages

against the original ones to see how well the proposed metho

works. The objective visual quality metrics include PSNR ame
other ones included in the MeTriX MuX Visual Quality Assessth
(VQA) Packagel[1]7]. All the 200 test images are 8-bit gragisc
images, S@min = 0 andzmax = 255.

3.1. Performance of DC Recovery

The performance of DC recovery is nearly perfect as judgedth
thors as human observers. For all 200 test images, we caamany
obvious quality degradation other than some global intgrsdiift,
which is rarely viewed as visual distortion since no peraaptn-
formation is lost. The recovery results on two typical tesages

@ 0

)

When the image size is large, the required memory and compiz=ig 1. The recovery results of two test images (a) “Lenna” and (d)

“cameraman”: (b) and (e) DC-free images by setting the mgsBIC
coefficients to the midpoints of the valid ranges; (c) andgfpvered
images by the proposed method.

sistently over the whole image database. For some VQA nsetzic
few images seems to have worse quality, but a manual chedkeby t
authors revealed no noticeable difference in subjectiadityuSince
the FRM method outperforms the method proposed by Uettaah

in [[7], the proposed method is the best among the three.

Pr{A(PSNR)>0] = 0.85, Mean(A(PSNR)) = 2.46242 Pr[A(SSIM)>0] = 0.94, Mean(A(SSIM)) = 0.0221093
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Fig. 2. The performance comparison between the proposed method
and the DC recovery method proposed.ih [8], where the rededash
line shows the mean value of the difference of quality mstric

Lenna z_ind cameraman- are shown in Ag. 1. The DC TECOVEIY3 2. Performance of DCT Coefficients Recovery

process is also very efficient. The whole process could firish

less than 10 seconds on all laptop/desktop PCs we tested #xeu We also studied the performance of the proposed method When

periments and the average running time over the 200 testeisnag 1 most significant DCT coefficients in each block are unknows. A

around 5 seconds on our main test computer (a quad-coreogiskt shown in Fig[B, the visual quality of the recovery image gally
We compared the performance of the proposed method and tliecreases while the value Gfincreases. This is expected since we

FRM method proposed i][8]. The results are shown in[Big. Zreh
the x-axis denotes the image index and the y-axis shows ffes-di
ence of quality metrics of the two methods. A positive valusamns
that the proposed method performs better. One can see éhptdh

have less and less known DCT coefficients available for reoy
the missing one. The recovery performance is still good fones
images even when more than 10 most significant DCT coeffient
are missing as shown in Figl 4). The average running timeesing

posed method outperforms the FRM method significantly amd co from around 5 second€/(= 1) to around 10 minuted{ = 15).
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e Further improvement of the method to balance time/space
complexity and the visual quality of the recovered image.

e Generalization of the method to handle unknown sign bits of
some DCT coefficients.

e Generalization of the method to permuted DCT coefficients
(i.e., when locations of some DCT coefficients are unknown).
e Generalization of the method to color image and video by
exploiting more correlation among different color chasnel
o o and different video frames.
" Number of unknown DCT coeffcients " Number of unknown DCT coefficients e Generalization of the method to other transforms, esggcial
DWT used in JPEG2000.
Fig. 3. The average visual quality measured in terms of PSNR and 4 applications of the method to image and video compression
SSIM of the 200 test images féf = 1, - - -, 15. by coding less information about transform coefficients.
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