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Abstract—Synthetic aperture radar (SAR) imagery suffers from the
speckle phenomenon. Speckle gives rise to the presence of multiplicative
noise which severely degrades the observed images. It is known that
logarithmically transformed speckle can be well approximated by a
Gaussian distribution. In this paper we propose an algorithm for
despeckling images, within the log-transformed spatial domain, using
a TV prior whose model parameter is automatically determined using
the Evidence Analysis within the Hierarchical Bayesian Paradigm. The
effectiveness of the proposed algorithm, over both synthetically speckled
and real SAR images, is studied.

Index Terms—SAR images denoising, despeckling, parameter estima-
tion, Bayesian methods, image restoration.

I. INTRODUCTION

Synthetic aperture radar (SAR) satellite and airborne sensors
gather a huge amount of all time, all weather, valuable information.
It is well known (see [1]) that SAR, as other coherent imagery, like
ultrasound and laser scans, suffer from the speckle phenomenon.
Speckle is due to the interferences of waves reflected by many
elementary reflectors inside a resolution cell, which, when fully
developed, give rise to the presence of multiplicative noise. Fully
developed speckle appears when the scanned surface is extremely
rough compared to the beam wavelength. In this paper we only
consider fully developed speckle. Speckle seriously damages the
usability of observed images. A way to mitigate speckle is to take
many samples per resolution cell, which is known as multi-look, but
at the cost of a loss of resolution.

Many approaches to the problem of denoising speckled images,
also known as despeckling, have been proposed. Median and adaptive
filters, based on local statistics like the method in [2], have been
applied (see [3]). The problem has also been studied within the
wavelet and other transformed domains (see [4]–[6]), and several
Total Variation (TV) applications to despeckling have appeared (see
[6]–[9]). Some methods work directly with the observed images [2],
[3], [7], [9], while others first apply a log-transform to the images,
in order to convert multiplicative into additive noise [4]–[6], [8].

In this paper we propose a simple algorithm for despeckling
images, within the log-trasformed spatial domain, using a TV prior.
The model parameter is automatically determined using the Evidence
Analysis within the Hierarchical Bayesian Paradigm [10].

The rest of this paper is organized as follows. Section II provides
the mathematical model for speckled images acquisition process.
We provide the description of the hierarchical Bayesian framework
modeling the unknowns in Section III. The inference procedure
utilized to develop the proposed method is presented in Section IV.
We demonstrate the effectiveness of the proposed approach with
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experimental results in Section V. Finally, section VI concludes the
paper.

II. PROBLEM FORMULATION

The degradation model for an L-looks observed image g, of size
p = s×t, with elements gi subject to fully developped speckle noise,
from the noise free original image f , of the same size, with elements
fi, is the following

gi = fiµi , for i = 1, .., p. (1)

Therefore µ, of size p, with elements µi, in Eq. (1), follows the
Gamma distribution

p(µi) = Γ(µi|L,L) , for i = 1, .., p , (2)

with

Γ(ω|a, b) =
ba

Γ(a)
ωa−1 exp [−bω] , (3)

for ω > 0, where a > 0 and b > 0 are the shape and inverse scale
parameters, respectively. Its mean and variance are E[ω] = a/b ,
Var[ω] = a/b2. So, for p(µi) in Eq. (1) we have E[µi] = 1 and
Var[µi] = 1

L
.

It has been shown (see [11]) that logarithmically transformed
speckle noise approximately follows the Gaussian distribution, that
is,

lnµi ∼ N (µi|m,σ2) (4)

with mean and variance

m = ψ(L)− lnL , σ2 = ψ(1)(L) , (5)

where ψ(z) = d
dz

ln Γ(z) is the digamma function, and ψ(1)(z) =
d
dz
ψ(z) is the polygamma function of order 1.
Let us define the logarithmically transformed images, of size p,

yi = ln gi , (6)

and

xi = ln(fi) +m, for i = 1, .., p , (7)

where m has been defined in Eq. (5). From Eqs. (1) and (4), we
obtain the following degradation model, for the ’observed’ y from
the unknown x,

y = x+ ν , (8)

with y, x and ν, lexicographically arranged vectors of size p, ν ∼
N (ν|0, σ2I), σ2 defined in Eq. (5), and I the p× p identity matrix.

Then to obtain an estimate of f from one of x one simply uses

f̂i = exp (x̂i −m) , for i = 1, .., p , (9)



where x̂i is an estimate of xi in Eq. (8) which is obtained with a
denoising method (see [12]).

In this paper the estimate of x̂ is obtained by utilizing a TV prior
on x. The unknown parameter of this prior distribution is estimated
by making use of the Evidence Analysis within the Bayesian frame-
work. Chambolle’s algorithm [13] is used to find the maximum ‘a
posteriori’estimate of x for a TV prior.

III. BAYESIAN MODELING

Our problem is now stated in terms of a Bayesian inference about
the unknown x from the transformed observed image y. We will
solve for x within the Hierarchical Bayesian Paradigm (see [10]).

In the hierarchical approach to image restoration we have at least
two stages. In the first stage, knowledge about the structural form
of the noise and the structural behavior of the restoration is used in
forming p(y|x) and p(x|α), respectively.

Given the degradation model defined in Eq. (8), the probability
distribution p(y|x) will be

p(y|x) = N (y|x, σ2I) , (10)

with σ2 known and defined in Eq. (5).
We will use a TV image prior [14], that is,

p(x|α) ∝ α
p
2 exp (−αTV(x)) , (11)

with the model parameter α, and

TV(x) =

p∑
i=1

√
(∆h

i (x))
2

+ (∆v
i (x))2 , (12)

where ∆h
i (x) and ∆v

i (x) are the horizontal and vertical first order
differences of x.

In the second stage, of the hierarchical approach, we incorporate
knowledge about the model parameter α, using the Gamma hyper-
prior, that is,

p(α) = Γ(α|aoα, boα) , (13)

where the Gamma distribution has been defined in Eq. (3).
Finally, the joint probability distribution of our model is

p(x,y, α) = p(y|x)p(x|α)p(α) , (14)

where the distributions p(y|x), p(x|α) and p(α) have been defined
in Eqs. (10), (11), and (13), respectively.

IV. BAYESIAN INFERENCE

Bayesian inference will be performed in the so-called Evidence
Analysis approach [10]. In this approach α̂ is first selected as

α̂ = argmax
α

∫
p(α,x|y) dx = argmax

α

∫
p(α,x,y) dx

= argmax
α

{
p(α)

∫
p(y|x)p(x|α) dx

}
, (15)

and then x̂ as

x̂ = argmax
x

{p(y|x)p(x|α̂)} . (16)

Utilizing

E(x, α,y) =

{
1

2σ2
‖ x− y ‖2 +αTV(x)

}
, (17)

we have

α̂ = argmax
α

{
α
p
2 p(α)

∫
exp {−E(x, α,y)}dx

}
(18)

and

x̂ = argmin
x
E(x, α̂,y) . (19)

Unfortunately, we can not directly tackle the minimization in
Eq. (18) because of the TV image prior. In earlier work with TV pri-
ors (see [15]), this difficulty is overcome by resorting to majorization-
minimization (MM) approaches, which is also the method adopted in
this paper.

The main principle of the MM approach is to find a bound of
E(x, α,y) which makes the maximization of (18) tractable. Let us
first consider the functional

M(x,u) =

p∑
i=1

(∆h
i (x))

2
+ (∆v

i (x))2 + ui
2
√
ui

, (20)

where u ∈ (R+)p, is a p−dimensional vector that needs to
be computed, as it will be shown below. It can be shown that
TV(x) ≤ M(x,u) [15], and this leads to the following upper bound
for E(x, α,y)

E(x, α,y) ≤
{

1

2σ2
‖ x− y ‖2 +αM(x,u)

}
= F(x,u, α,y) ,

(21)

which results in a lower bound of the integral in Eq. (18), when
replacing E(x, α,y) by F(x,u, α,y).

Then the maximization in Eq. (18) is replaced by the maximization
of its lower bound, that is, we have

α̂ ≈ argmax
α,u

{
α
p
2 p(α)

∫
exp {−F(x,u, α,y)} dx

}
. (22)

Note that alternatively maximizing this bound with respect to the
unknowns and the auxiliary variable u results in closer bounds at
each iteration. The bound in Eq. (22) is quadratic and therefore it is
straightforward to evaluate analytically.

Let us examine the estimation process in Eq. (22) in detail. We
can rewrite F(x,u, α,y), in Eq. (21), as

F(x,u, α,y) =
1

2

{
1

σ2
yt(y − 2x) +

p∑
i=1

α
√
ui

+xtQ(u, α)x
}
, (23)

where t denotes the transpose vector, and

Q(u, α) =
1

σ2
I + α

(
∆htW (u)∆h + ∆vtW (u)∆v

)
. (24)

In the equations above, ∆d, for d = h, v, represents the p × p
convolution matrix associated with the first order horizontal (or
vertical) differences, and W (u) is a p × p diagonal matrix of the
form W (u) = diag

(
u−

1
2

)
.

Fixing α and u and expanding F(x,u, α,y) around its minimum
on x which we denote by x̄, we have

F(x,u, α,y) = F(x̄,u, α,y) + (x− x̄)t)Q(u, α)(x− x̄) ,
(25)

and therefore∫
exp {−F(x,u, α,y)} dx =|Q(u, α)|−

1
2×

exp {−F(x̄,u, α,y)} . (26)



Now, using Eq. (25) in Eq. (22) and differentiating the right hand
side of Eq. (22) with respect to α and u we obtain

1

α̂
= η

1

αo
+ (1− η)

2

p

p∑
i=1

√
ûi , (27)

with αo =
aoα−1

boα
= Mode(p(α)), where the hyperprior p(α) has

been defined in Eq. (13), and η ∈ [0, 1) is η =
aoα−1

p/2+aoα−1
. In Eq. (27)

ûi =(∆h
i (x̄))

2
+ (∆v

i (x̄))2

+ tr
[
Q(û, α)−1

(
∆htδ(i)∆h + ∆vtδ(i)∆v

)]
, (28)

where δ(i) is a p × p matrix with all its values equal to 0, except
δ(i)i,i = 1. An approximation for the trace in the above equation is
found by using

Q(u, α) ≈ Q̄(u, α) =
1

σ2
I + αz(u)

(
∆ht∆h + ∆vt∆v

)
,

(29)

with z(u) = 1
p

∑
i

1√
ui
, ∀u ∈ (R+)p.

With this last approximation in mind, and substituting x̄ by x̂
defined in Eq.(19), Eq. (28) becomes

ûi = (∆h
i (x̂))

2
+ (∆v

i (x̂))2 + d(û, α̂) , (30)

with d(u, α) = 1
p
tr
[
Q̄(u, α)−1

(
∆ht∆h + ∆vt∆v

)]
. Notice that

the substitution of x̄ by x̂ implies that the expansion in Eq. (25)
is carried out around the maximum a posteriori solution defined in
Eq. (19), and that the first order term in x̂ is close to the one in
x̄ which is zero. This expansion is expected to produce a better
approximation to the solution of Eq. (18) than when the quadratic
approximation in Eq. (22) is utilized. Notice also that x̂ can be easily
calculated using Cambolle’s algorithm.

Finally the proposed iterative method is summarized in Algo-
rithm 1.

Algorithm 1 Bayesian TV denoising of speckled images
Obtain the log transformed observed image y = ln g, set n = 1,
α̂n−1 = αo = p

2TV(y)
, un−1 = 0, and assign a value to η

while convergence criterion is not met do
1. Compute x̂n = argminx E(x, α̂n−1,y) by applying Cam-
bolle’s method.
2. Compute ûni = d(ûn−1, α̂n−1) + (∆h

i (x̂n))
2

+ (∆v
i (x̂n))2.

3. Compute 1
α̂n

= η 1
αo

+ (1− η) 2
p

∑p
i=1

√
ûni .

4. Set n = n+ 1.
Obtain the image f by applying to x̂ the inverse transform of
Eq. (9).

V. EXPERIMENTAL RESULTS

A number of experiments have been carried out in order to evaluate
the performance of the proposed algorithm 1 (henceforth referred
to as LTV), compare with the method in [2], and with a Wiener
restoration of the y image, defined in Eq. (6), to which the inverse
transform of Eq. (9) is later applied to obtain f̂Wie (henceforth
referred to as LWie).

The proposed algorithm was ran until the criterion ‖α̂k −
α̂k−1‖/max(α̂k, α̂k−1) < 10−3 was satisfied, or a number of 10
iterations reached, with α̂k denoting the α̂ estimate at the k iteration
step. We have used for η, defined in Eq. (27), the value η = 1−0.8/L,
which prevents an experimentally observed trend, of the proposed

TABLE I
VALUES OF PSNR AND SSIM FOR DIFFERENT RESTORATIONS OF THE

SYNTHETIC IMAGE SET, FOR DIFFERENT NUMBER OF LOOKS L
MULTIPLICATIVE NOISE.

[2] LWie LTV
Image PSNR SSIM PSNR SSIM PSNR SSIM L

23.11 0.4922 14.05 0.1777 23.45 0.5477 4
Fig. 1(a) 26.60 0.6694 20.89 0.4494 26.90 0.6909 16

27.54 0.7169 24.00 0.6028 28.28 0.7425 32
28.15 0.7460 27.07 0.7404 29.95 0.8014 64
17.69 0.3336 9.67 0.1172 18.32 0.4192 4

Fig. 1(f) 22.63 0.5486 15.34 0.2794 23.53 0.6437 16
24.29 0.6465 18.05 0.3818 25.27 0.7259 32
25.47 0.7251 20.91 0.4941 27.03 0.7954 64
20.97 0.3616 11.34 0.1019 22.45 0.5203 4

Lena 26.42 0.5785 17.71 0.2549 28.58 0.7638 16
28.68 0.6798 20.71 0.3542 30.53 0.8207 32
30.50 0.7638 23.70 0.4649 32.27 0.8610 64
20.08 0.4186 11.10 0.2432 20.94 0.5173 4

camera 23.48 0.5563 17.40 0.4015 26.01 0.7214 16
24.57 0.6380 20.53 0.4790 28.03 0.7912 32
25.21 0.7096 23.60 0.5569 29.99 0.8429 64

algorithm 1, to obtain too high values for α when the value of the
number of looks L grows, producing an extra-smoothing effect.

We first deal with synthetic images. Two aerial images, a 1024×
1024 image, a detail of which is shown in Fig. 1(a), and a 512×512
one, a detail of which is shown in Fig. 1(f). The 512 × 512 Lena
and the 256×256 cameraman images have also been used in the ex-
periments. Multiplicative noise, corresponding to different number of
looks L, has been generated and the resulting degraded images were
restored applying the various methods. Table I shows a numerical
comparison of the different methods both in term of the peak signal-
to-noise ratio (PSNR), and the Structural Similarity Index Measure
(SSIM) defined in [16], whose maximal value, corresponding to
exactly equal images, is +1. In Fig. 1 details from a 360 × 360
segment of the original, degraded, and the different restorations, for
the two aerial images are shown. Both the numerical and the visual
comparison of the restored images support the better performance of
the proposed algorithm.

Finally a real TerraSAR-X Enhanced Ellipsoid Corrected (EEC)
HH polarization channel image, from near Rome, has been consid-
ered. A 256 × 256 image zone of a 25 looks observation is shown
in Fig. 2(a), and its corresponding restoration using the proposed
method is shown in Fig. 2(b). In this case the real noise free image
is not available in order to perform a numerical evaluation of the
restoration quality, but the reduction of speckle in the restored image
is visually appreciable.

VI. CONCLUSIONS

A novel algorithm for despeckling images, within the log-
transformed spatial domain, using a TV prior whose model parameter
is automatically determined using Evidence Analysis within the
Hierarchical Bayesian Paradigm, has been proposed in this paper.
Both the numerical and the visual evaluation of the quality of the
restored images support the effectiveness of the proposed algorithm.
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