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ABSTRACT
We combine both amplitude and texture statistics of the Syn-
thetic Aperture Radar (SAR) images using Products of Ex-
perts (PoE) approach for classification purpose. We use Nak-
agami density to model the class amplitudes. To model the
textures of the classes, we exploit a non-Gaussian Markov
Random Field (MRF) texture model with t-distributed regres-
sion error. Non-stationary Multinomial Logistic (MnL) latent
class label model is used as a mixture density to obtain spa-
tially smooth class segments. We perform the Classification
Expectation-Maximization (CEM) algorithm to estimate the
class parameters and classify the pixels. We obtained some
classification results of water, land and urban areas in both
supervised and semi-supervised cases on TerraSAR-X data.

Index Terms— High resolution SAR, TerraSAR-X, clas-
sification, texture, multinomial logistic, Classification EM,
Products of Experts

1. INTRODUCTION

The aim of SAR image classification is to assign each pixel
to a class with regard to a feature space. Some of the basic
features used in SAR image classification are the intensity or
the amplitude and the phase of the observed image [1]. To
model the statistics of such data, both empirical and theoret-
ical probability density functions (pdfs) have been proposed
[1]. Finite mixture model is a suitable statistical model to rep-
resent SAR image histogram and to perform classification. A
combination of the pdfs into a finite mixture model has been
used in [2].

The texture which represents the context of the image can
also be used as a feature. Correlated K-distributed noise is
used to capture the texture information of the SAR images
in [3]. In [4], Gray Level Co-occurrence Matrix (GLCM)
[5] and semivariogram [6] textural features are resorted to
classify very high resolution SAR images including urban ar-
eas. In this study, we use a non-Gaussian MRF model, so-
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called t-MRF, for texture representation [7]. In this autore-
gressive model, we express a pixel as a linear combination of
its neighboring pixels. We assume that the regression error
is an independent and identically distributed (iid) Student’s
t-distribution. t-distribution is a convenient model for robust
regression and it has been used in image processing as a ro-
bust statistical model [7].

There are some methods to combine the results of dif-
ferent classifiers [8]. Rather than this, we construct a single
classifier using the Products of Experts (PoE) approach [9] to
combine both SAR amplitude and texture features into a fi-
nite mixture model. In our mixture model, we assume that
each latent class label is a categorical random variable which
is a special version of the multinomial random variable where
each pixel belongs to only one class. For each class, we have
a binary map that indicates the pixels belonging to that class.
We introduce the spatial interaction of each binary map using
multinomial logistic model [10] to obtain a smooth segmenta-
tion map. Note that the edge preserving segmentation is out of
the scope of this paper. In this logistic regression model, the
probability of the class label is proportional to a linear com-
bination of surrounding binary pixels. In contrast to Potts-
Markov image model [11], we have K different probability
density functions for random fields of each class, instead of
a single Gibbs distribution. The final density of the class la-
bel is constituted by combining K probability densities into a
multinomial density. In this way, we obtain a non-stationary
multinomial class density function which incorporates both
class mixture probabilities and spatial smoothness into a sin-
gle density. A non-stationary finite mixtures model been has
introduced for image classification in [12]. A single model
and algorithm are preferred to avoid the propagation of the
error between different models and algorithms.

The EM algorithm and its stochastic versions have been
used for parameter estimation in latent variable models. We
use a computationally less expensive version of EM algo-
rithm, namely Classification EM (CEM) [13], for both pa-
rameter estimation and classification, using the advantage of
categorical random variables. After the classification step of
CEM, we estimate the parameters of the class densities using
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only the pixels which belong to that class.
In Section 2 and 3, the MnL mixture model and CEM

algorithm are given. The simulation results are presented in
Section 4. Section 5 presents the conclusion and future work.

2. MULTINOMIAL LOGISTIC MIXTURE OF
AMPLITUDE AND TEXTURE DENSITIES

We assume that the observed amplitude at the nth pixel, sn,
where n ∈ {1, 2, . . . , N} represents the lexicographically or-
dered pixel indices, is free from any noise and instrumental
degradation. Every pixel in the image has a latent class label.
Denoting K the number of classes, we encode the class la-
bel as a K dimensional categorical vector zn whose elements
zn,k, k ∈ {1, 2, . . . ,K} have the following properties: 1)
zn,k ∈ {0, 1} and 2)

∑K
k=1 zn,k = 1. We may write the prob-

ability of sn as the marginalization of the joint probability of
p(sn, zn|Θ) = p(sn|zn,Θ)p(zn|θz)

p(sn|Θ) =
∑

zn

K
∏

k=1

[p(sn|θk)πn,k]
zn,k (1)

where πn,k = p(zn,k = 1|θz), θk and θz are the parame-
ters of the class and mixture densities respectively and Θ =
{θ1:K , θz} is the set of all parameters. We give the details of
the class and the mixture densities in the following two sec-
tions.

2.1. Class Amplitude and Texture Densities

Our aim is to use the amplitude and the texture statistics to-
gether to classify the SAR images. For this purpose, we com-
bine both statistics by using the idea of PoE [9]. We model
the class amplitudes using Nakagami density, which is a basic
theoretical multi-look amplitude model for SAR images [1].
We express the class amplitude density as

pA(sn|µk, νk) =
2

Γ(νk)

(

νk
µk

)νk

s2νk−1
n e

(

−νk
s2n
µk

)

. (2)

We introduce a t-MRF texture model to use the contextual
information for classification. We write the t-MRF texture
model using the neighbors of the pixel in N (n):

sn =
∑

n′∈N (n)

αk,n′sn′ + tk,n (3)

where αk,n′ is the regression coefficient and the regression
error tk,n is an iid t-distributed zero-mean random variable
with degree of freedom parameter βk and scale parameters
δk. In this way, we write the class texture density as a t-
distribution such that

pT (sn|α1:D,k, βk, δk) =
Γ((1 + βk)/2)

Γ(βk/2)(πβkδk)1/2

×

[

1 +
(sn − φTnαk)

2

βkδk

]−
βk+1

2

(4)

where the D = |N (n)| dimensional vectors φn and αk con-
tain the neighboring pixels sn′ and regression coefficients
αk,n′ , respectively.

We constitute the class density by multiplying the am-
plitude and texture densities: p(sn|θk) = pA(sn|µk, νk) ×
pT (sn|α1:D,k, βk, δk)where θk = {α1:D,k, βk, δk, µk, νk}.

2.2. Mixture Density - Class Prior

The prior density p(zn,k|θz) of the categorical random vari-
able is naturally an iid multinomial density, but we are not
able to obtain a smooth class label map in case that we use an
iid multinomial. We need to use a density which models the
spatial smoothness of the class labels as well. Multinomial
logistic model, [10], allows us to introduce the spatial inter-
action of the categorical random field. We can write the MnL
density for our problem as

p(zn|θz) =
K
∏

k=1

(

exp(θzvk(zn,k))
∑K

j=1 exp(θzvj(zn,j))

)zn,k

(5)

where vk(zn,k) = 1+
∑

m∈M(n) zm,k. The function vk(zn,k)
returns the number of labels which belong to class k in a given
window. The mixture density in (5) is spatially-varying with
given function vk(zn,k).

3. CLASSIFICATION EM ALGORITHM

Since our purpose is to cluster the observed image pixels by
maximizing the marginal likelihood given in (1), we suggest
to use EM type algorithm to deal with the summation. The
EM log-likelihood function is written as

Q(Θ|Θt−1) =

K
∑

k=1

zn,k log{p(sn|θk)πn,k}p(zn,k|sn,Θ
t−1)

(6)
If we used the exact EM algorithm to find the maximum of
Q(Θ|Θt−1) with respect to Θ, we would need to maximize
the parameters for each class given the expected value of the
class labels. Instead of this, we use the advantage of work-
ing with categorical random variables and resort to Classifi-
cation EM algorithm [13]. The CEM algorithm incorporates
a classification step between the E-step and the M-step which
performs a Maximum-a-Posteriori (MAP) estimation. Since
the posterior p(zn,k|sn,Θt−1) is a discrete probability den-
sity function of a finite number of classes, we can perform
the MAP estimation by choosing the maximum class proba-
bility. We summarize the CEM algorithm for our problem as
follows:

E-step: For k = 1, . . . ,K and n = 1, . . . , N , calculate
the posterior probabilities

p(zn,k|sn,Θ
t−1) = p(sn|θ

t−1
k )

exp(θt−1
z vk(zn,k))

∑K
j=1 exp(θzvj(zn,j))

(7)
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given the previously estimated parameter set Θt−1.
C-step: For n = 1, . . . , N , classify the nth pixel into

class j as zn,j = 1 by choosing j which maximizes the pos-
terior p(zn,k|sn,Θt−1) over k = 1, . . . ,K as

j = argmax
k

p(zn,k|sn,Θ
t−1) (8)

M-step: Maximize the EM log-likelihood function in (6)
with respect to Θ. To maximize this function, we alternate
among the variables µk, νk, αk, βk and δk. The functions of
the amplitude parameters over all pixels are written as follows

Q(µk; Θ
t−1) = −Nνk log µk −

νk
µk

N
∑

n=1

s2n (9)

Q(νk; Θ
t−1) = Nνk log

νk
µk
−N log Γ(νk)+

(2v − 1)
∑N

n=1 log sn −
νk
µk

∑N
n=1 s

2
n

(10)
The maximum of (9) is found analytically. For (10), we use a
zero finding method to determine its maximum [14].

We estimate the texture parameters using another sub-EM
algorithm nested within CEM. The nested EM algorithm has
already been studied in [15]. We can express the t-distribution
as a Gaussian scale mixture of gamma distributed latent vari-
ables τn,k. Thereby, the EM log-likelihood functions of the
t-distribution in (4) are written as [16], [7]:

Q(αk; Θ
t−1) = −

N
∑

n=1

(sn − φTnαk)
2

2δk
〈τn,k〉 (11)

Q(δk; Θ
t−1) = −

N

2
log δk −

N
∑

n=1

(sn − φTnαk)
2

2δk
〈τn,k〉

(12)
Q(βk; Θ

t−1) = −N log Γ(βk2 ) +
Nβk

2 log βk
2

+
∑N

n=1

(

βk
2

)

〈log τn,k〉

−
∑N

n=1
〈τn,k〉βk

2

(

1 +
(sn−φ

T
nαk)

2

2δkβk

)

(13)
where 〈τn,k〉 is the posterior expectation of the gamma dis-
tributed latent variable.

4. SIMULATION RESULTS

This section presents the high resolution SAR image classifi-
cation results of the proposed method, compared to the corre-
sponding results obtained with other methods. We use a 900
× 600 pixels, HH polarized, TerraSAR-X SpotLight (8.2 m
ground resolution) 4-look image which was acquired over the
city of Rosenheim in Germany (see Fig. 1(a)).

The proposed method is denoted as ATML-CEM (Ampli-
tude and Texture density mixtures of MnL with CEM) and
is compared to three other methods. The competitors are
DSEM [2], CoDSEM-GLCM [4] and K-NN-MRF. We have

Table 1. Accuracy of the classification in water, urban and
land areas and overall.

water urban land overall
CoDSEM-GLCM (Sup.) 91.28 98.82 93.53 94.54

DSEM (Sup.) 92.95 98.32 81.33 90.87
K-NN-MRF (Sup.) 90.56 98.49 94.99 94.68
ATML-CEM (Sup.) 98.05 98.30 95.87 97.41

ATML-CEM (Semi-sup.) 94.53 97.85 86.09 92.82

Table 2. The confusion matrix to show the mean percentages
of the true and the false classified water, urban and land areas.

water urban land
water 84.40 5.51 10.09
urban 0.03 99.97 0
land 0.03 17.26 82.72

tested the ATML-CEM method in both supervised and semi-
supervised cases. For supervised case, we manually deter-
mine a ground-truth map which covers 20% of the whole im-
age and we divide it into two sets, for training and for testing.
In semi-supervised case, we initialize the algorithm by man-
ually selecting some regions (totaly about 26%) regarding to
each class. We use 5×5 and 3×3 windows for autoregres-
sive texture model in supervised and semi-supervised cases,
respectively. For MnL label model, a 13×13 window is used
with parameter θz = 7/132 which is found by trial and error.
Fig. 1(b) and 1(c) show the supervised and semi-supervised
classification maps of ATML-CEM method.

Table 1 lists the accuracy of the classification in water,
urban and land areas and overall according to a groundtruth
map. In overall, ATML-CEM provides significantly better
results than the others. Although the performance of semi-
supervised ATML-CEM is not good in land areas, it surpasses
the supervised DSEM in overall. Table 2 shows the confusion
matrix obtained by running supervised ATML-CEM 28 times
using some disjoint training and test set pairs selected over
groundtruth map. From the table, we can see that the urban
areas are classified better than the water and the land areas,
but some of the land areas are classified as urban areas. Miss-
classification in water areas is caused by the dark shadowed
regions.

5. CONCLUSION

We have shown that the use of amplitude and textural fea-
tures in the same finite mixture model has improved the per-
formance of classification for our data set. Different features,
like edges and corners, can be added to improve the perfor-
mance and classify the different areas. The performance of
the algorithm depends on the initialization of the classes. As
a future work, we plan to derive a hierarchical method to es-
timate the number of classes and to avoid the effect of initial-
ization.
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(a) (b) Supervised classification (c) Semi-supervised classification

Fig. 1. (a) 900 × 600 pixels, HH polarized TerraSAR-X SpotLight (8.2 m ground resolution) 4-look image which is acquired
over Rosenheim, Germany. c©Infoterra, 2008. (b) and (c) Classification maps obtained by ATML-CEM method. Blue (dark),
red (medium) and green (light) colors represent water, urban and land areas, respectively.
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