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ABSTRACT

Detecting foreground objects for night surveillance videos re-
mains a challenging problem in scene understanding. Though
many efforts have been made for robust background subtrac-
tion and robust object detection respectively, the complex il-
lumination condition in night scenes makes it hard to solve
each of these tasks individually. In practice, we see these two
tasks are coupled and can be combined to help each other. In
this work, we apply a recently proposed algorithm – Feed-
back Enabled Cascaded Classification Models (FECCM) – to
combine the background subtraction task and the object de-
tection task into a generic framework. The proposed frame-
work treats each classifier for the respective task as a ’black-
box’, thus allows the usage of most existing algorithms as one
of the classifiers. Experiment results show that the proposed
method outperforms a state-of-the-art background subtraction
method and a state-of-the-art object detection method.

Index Terms— Optimization, object detection, back-
ground subtraction, surveillance

1. INTRODUCTION

Detecting foreground objects is an important step for ana-
lyzing night surveillance videos. Though many efforts have
been made for developing robust background subtraction al-
gorithms and robust object detection algorithms, both the
background subtraction task and object detection task remain
difficult for night surveillance. Under night scenes, many ex-
isting background subtraction methods and object detection
methods suffer much from either heavy false alarm due to
dramatic lighting changes or missing detection as the fore-
ground color is very closed to the background in local due to
low contrast, as shown in Figure 1. In this work, our goal is
to achieve better performance in both background subtraction
and object detection for night surveillance videos.

Background Subtraction: Background subtraction plays
an important role in many applications in video surveillance
area, such as key-frame extraction, video summarization, ob-
ject detection, etc. Many efforts have been made to improve
the performance of subtracting the unmoving background,
e.g. [1, 2, 3, 4]. The traditional pixel level methods like [1, 4]
model the background as a set of independent pixel processes,

Fig. 1. Difficult examples of detecting foreground objects in night scenes
due to: 1) Dramatic illumination changes; 2) low contrast between fore-
ground and background.

which lose the spatial context information and often end up
with noisy detection. Therefore many methods are proposed
to utilize the spatial information between pixels [2, 3], or
to utilize temporal information [5] to better model the back-
ground in a scene, or combine both methods [6]. However,
in a night outdoor scene, the current existing methods still
suffer much from the following problems: 1) heavy false
alarm due to dramatic lighting changes and reflections on
other static objects; 2) missing detection due to the condition
that the foreground is very similar to the background in local
due to low contrast. The spatio-temporal modeling method
in [6] tries to combine the spatial information and temporal
information to better model the background in night outdoor
scene and achieves some improvement over the previous
spatial-only or temporal-only methods. This model assumes
a background patch under various lighting conditions lies in
a lower-dimension subspace than a patch under foreground
occlusion. Therefore, the model is less sensitive to the light-
ing changes. However, in practical testing, we notice that
this model still has problems: 1) it fails when there is strong
surface reflection in the environment; 2) it is sensitive to the
selection of parameters. 3) It could not handle well with the
gradual change of the global illumination across the scene.

Object Detection: We consider another way to detect the
foreground objects by training detectors for objects of some
specific categories that can appear in the surveillance videos.
In this work, we focus on outdoor night surveillance videos,
where objects of interest mainly include: cars, motorbikes
and persons. Although the objects in the night scene look
very different from those of the same category in the daytime,
they still share some common visual properties while in the
same type of scene. For example, the two turn-on headlights
are helpful hints to recognize a car in the night scene. These
observations suggest us to train some object detectors of the
night scene in order to better find out the object region and ex-
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Fig. 2. Our instantiation of the FECCM model to combine background
subtraction task and object detection tasks. (∀i ∈ {1, 2, . . . , n} Ψi(X) =
Features corresponding to the specific task extracted from image X, Zi =
Output of the corresponding task in the first stage parameterized by θi, Yi =
Output of the corresponding task in the second stage parameterized by ωi).

clude the lighted background. Since some parts of the object
are more discriminative than others for recognizing the ob-
ject, the part-based object model like [7] can be a reasonable
choice for building an object detector.

Combining Tasks: The background subtraction task and
the object detection task individually can help detect the fore-
ground regions to some extent. In practice, we see that these
two tasks are coupled – for example, if we know many pixels
inside a region belong to the foreground, it is more likely to
have an object of interest located in that region; reversely, if
we detect a bounding box for an object of interest, it could
serve as a strong indicator that the pixels inside the box are
foreground pixels. Therefore, sharing information between
these two tasks can help to improve each other.

Our contribution: We propose to combine the background
subtraction task and the object detection task into one frame-
work and leverage each of them to help the other. We ap-
ply a recently proposed model called Feedback Enabled Cas-
caded Classification Model (FECCM) [8] to combine these
two tasks. The FECCM method jointly optimizes multiple
tasks being considered, and treats each classifier for a respec-
tive task as a black-box, which allows the usage of any exist-
ing methods in the black-box. Different from [8] which fo-
cuses on multiple tasks in scene understanding, we adapt the
model to the area of night surveillance videos in this work.
We also show that our method outperforms a state-of-the-art
background subtraction method and a state-of-the-art object
detection method for night surveillance.

2. ALGORITHM

In this section we introduce our instantiation of the Feedback
Enabled Cascaded Classification Model for night surveillance
application. We consider the following tasks: background
subtraction and detections of objects including car, person,
and motorbike.

Our instantiation of the model to combine the above tasks
is shown in Figure 2. The model is built in the form of a
two-layer cascade. The first layer consists of an instantiation

of each task with the image features as input. The second
layer is a repeated instantiation of each of the tasks with the
first layer task outputs as well as the image features as inputs.
In the following we briefly review the learning and inference
algorithms in [8]. Please refer to [8] for more details.

We want to model the conditional joint log likelihood of
all the task outputs, i.e., logP (Y|X), where Y indicates the
set Y1, Y2, . . . , Yn, and X is an image in a training set Γ.

log
Y
X∈Γ

P (Y|X; Θ,Ω) (1)

where Θ = {θ1, . . . , θn}, Ω = {ω1, . . . , ωn} are internal
parameters of the black-box classifiers used in the model.

To incorporate the first layer outputs, Equation 1 can be
extended as follows.

=
X
X∈Γ

log
X
Z

P (Y1, . . . , Yn,Z|X; Θ,Ω) (2)

=
X
X∈Γ

log
X
Z

nY
i=1

P (Yi|Ψi(X),Z;ωi)P (Zi|Ψi(X); θi) (3)

where Z indicates the set Z1, Z2, . . . , Zn.
However, the summation inside the log makes it difficult

to learn the parameters. Heitz et al [9] gives an approximate
solution by optimizing classifiers on each layer independently
(without considerations for other layers). This has a drawback
that there is no feeding back information from later classifiers
to earlier classiers during training. Motivated by the Expecta-
tion Maximization [10] algorithm, the FECCM method uses
an iterative algorithm where we first fix the latent variables
Zi’s and learn the parameters in the first step (Feed-forward
step), and estimate the latent variables Zi’s in the second step
(Feed-back step). Zi’s are initialized to the ground truth of
the respective tasks. We then iterate between these two steps.
Feed-forward Step: In this step, we assume that the latent
variablesZi’s are known (and Yi’s are known anyway because
they are the ground-truth). Then optimizing Equation 3 over
the parameters can be nicely broken down into the follow-
ing sub-problems of training the individual classifier for the
respective tasks:

max
ωi

X
X∈Γ

logP (Yi|Ψi(X), Z1, . . . , Zn;ωi) (4)

max
θi

X
X∈Γ

logP (Zi|Ψi(X); θi) (5)

Note that we can use the same training algorithm as the orig-
inal black-box classifier to solve these sub-problems.
Feed-back Step: In this step, we estimate the values of the
latent variables Zi’s assuming that the parameters are fixed
(and Yi’s are given because the ground-truth is available). We
perform MAP inference on Zi’s. Using Equation 3, we get
the following optimization problem for the feed-back step:

max
Z1,...,Zn

logP (Y1, . . . , Yn, Z1, . . . , Zn|X; θ1, . . . , θn, ω1, . . . , ωn)

⇔ max
Z1,...,Zn

nX
i=1

logP (Zi|Ψi(X); θi) + logP (Yi|Ψi(X),Z;ωi)

(6)



This maximization problem requires that we have access to
the characterization of the individual black-box classifiers in
a probabilistic form. We do this by taking the output of the
classifiers and modeling their log-odds as a Gaussian (partly
motivated by variational approximation methods). Parame-
ters of the Gaussians are empirically estimated when the ac-
tual probabilistic form is not available.

In some cases, the classifier log-likelihoods in the prob-
lem in Equation 6 actually turn out to be convex. For example,
if the individual classifiers are linear or logistic classifiers, the
minimization problem is convex and can be solved by using a
gradient descent (or any similar method).

Inference: Similar to the learning process, the inference is
conducted in a feed-forward manner: solve the first layer out-
puts and then solve the second layer outputs. Given the struc-
ture of our directed graph, the outputs for different classifiers
on the same layer are independent given their inputs and pa-
rameters. Therefore, we have

Ẑi = argmax
Zi

logP (Zi|Ψi(X), θi), i = 1, . . . , n (7)

Ŷi = argmax
Yi

logP (Yi|Ẑ,Ψi(X), ωi), i = 1, . . . , n (8)

This approximate inference allows us to use the internal in-
ference function of the black-box classifiers without knowing
its inner workings. It is tractable since its complexity is no
more than constant times the complexity of inference in the
original classiers.

3. IMPLEMENTATION

In this section we will introduce the classifiers used in the
framework shown in Figure 2 and the state-of-the-art method
[6] used for comparison.

Background Subtraction. For the first-layer background
subtraction, we build a gaussian model for the gray-scale
value of each pixel when being background. For a new frame,
it is considered to be a foreground pixel when its difference
to the model mean is larger than a threshold T (refer to codes
for the exact value). The model is updated dynamically as
follows.

θl(p) = (1− α)× θl−1(p) + α× Il(p) if p ∈ foreground (9)

θl(p) = (1− β)× θl−1(p) + β × Il(p) if p ∈ background (10)

where p indicates a pixel in the image, θl(p) is the Gaussian
mean of the background model for the pixel p at the lth frame,
θl−1(p) is the Gaussian mean of the background model for the
pixel p at the (l−1)th frame, and I l(p) is the gray-scale value
of the pixel p in the lth frame. α and β are the update factors,
where β is set to be larger than α (In our implementation,
α = 0.05 and β = 0.2).

For the second-layer background subtraction, we use a lo-
gistic classifier, which classifies a pixel as foreground or back-
ground. The input feature vector includes the original feature
input of the first-layer background subtraction (the absolute

difference between the pixel value and the Gaussian mean),
the binary output of the first-layer background subtraction,
and the binary output at the pixel from each of the first-layer
object detectors.

Object Detection. For the first-layer object detectors, we
use histogram of oriented gradients (HOG) features [11]
and apply the deformable-parts-based model in [7]. The
deformable-parts-based model contains a mixture of compo-
nents, allowing for better modeling of the variety of objects
within a category. Each component contains a coarse root-
filter that serves as a global template for the object, and higher
resolution part-filters for different localized parts of the ob-
ject. In our implementation, we use 8 part-filters. The spatial
locations of the object and parts is modeled via a star-graph.
The deformable-parts-model is trained discriminatively via a
latent SVM. A detailed description of the model can be found
in [7]. In our implementation, we first divide the training im-
ages into 2 groups based on the time period. For each group,
we further divide the object boxes into 2 sub-groups based on
the aspect ratio of the ground-truth bounding boxes. For each
of these sub-groups, we generate a left-right flipped version
of each image and then use them to train 2 components re-
spectively for the left and right poses of the object. Therefore,
we have 8 components in total for an object template.

On the second layer, an object detector is a classifier
which re-scores all the candidate boxes detected from the
first-layer object detector with an extremely low thresh-
old. The classifier is a RBF-kernel SVM classifier, whose
input includes the top-left and bottom-right coordinates
(x1, y1, x2, y2) of a candidate box, the first-layer object de-
tector output score for the candidate box, and a score which
is the mean value of the first-layer background subtraction
outputs of all pixels inside the candidate box.

Subspace Background Subtraction Based on Spatio-
temporal Patches. This is our implementation of the method
proposed in [6]. We add two more steps to improve the
original algorithm: (1) For patches that are decided to be
foreground by the original algorithm, we look at their stan-
dard derivation over the past 25 frames. If there is no much
change in the past 25 frames, We decide this patch belongs
to the background and will be used to update the back-
ground model. This helps to eliminate the ghost effect. When
some objects which are part of the background in previous
frame start to move, dramatic changes would happen in some
patches and a new background model is needed to be built for
those patches. However, according to the original algorithm
in [6], those patches with dramatic changes would not be used
to update the model. (2) We remove connected regions whose
area is too small, in order to remove some noisy detection.

4. EXPERIMENTS

Dataset: We use the road surveillance dataset and the gate
entrance dataset built by Industrial Technology Research In-



Table 1. Performance of background subtraction
F1 measure

Pixel-based Gaussian Model 0.385
Subspace Method [6] 0.514

Our Method 0.622

Table 2. Performance of object detection
AP (Average Precision)

Car Person Motorbike
Part-based Method [7] 0.556 0.310 0.223

Our Method 0.610 0.352 0.425

stitute for experiments. For each dataset, We use 5 videos for
training and 10 videos for testing (3000 – 6000 frames per
video) . For each frame, the foreground regions are labeled
with bounding boxes and object categories.
Evaluation: We evaluate the object detection performance
via the average precision (AP) of precision-recall curves as in
[12]. We evaluate the final foreground detection output with
the F1 measure, computed as follows.

precision =
1

N

X
i

GT i ∩ Y i1P
p Y

i
1 (p)

(11)

recall =
1

N

X
i

GT i ∩ Y i1P
pGT

i(p)
(12)

F1 =
2× precision× recall
precision+ recall

(13)

where GT i is the ground-truth foreground map for the ith

test image, and Y i
1 is the detected foreground map for the ith

test image. GT i(m,n) equals to 1 when the pixel p belongs
to foreground, otherwise equals to 0.

Table 1 and Table 2 give results for background subtrac-
tion and object detection respectively. Note that with one sin-
gle model, our method outperforms a state-of-the-art back-
ground subtraction method in [6] and a state-of-the-art object
detection method in [7]. Some visualized results from the
proposed algorithm are given in Figure 3.

5. CONCLUSION

In this work, we use a generic model – Feedback Enabled
Cascaded Classification Model – to combine background sub-
traction and object detection for improved foreground detec-
tion in night surveillance. The proposed method treats each
classifier for the respective task as a ’black-box’, thus al-
lows using any existing algorithm as one of the classifiers in
the model. Experiments on real data show that our method
outperforms a state-of-the-art background subtraction method
specifically designed for night scenes and a popular object
detection method. In the future, we would like to try more
advanced algorithms in the black-box classifiers, to further
improve the the final output.

Fig. 3. Examples of the results on surveillance videos in the two ITRI
datasets. Each row corresponds to 2 examples. In each example, the left
image shows the groundtruth foreground objects (green for “car”, blue for
“motorbike”) and detected objects (red for “car”, yellow for “motorbike”),
and the right image shows the detected foreground pixels (in pink mask).
Best viewed in color.
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