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Abstract

We propose a particle filtering framework for rigid registration of a model image to a time-series
of partially observed images. The method incorporates a model-based segmentation technique in
order to track the pose dynamics of an underlying observed object with time. An applicable
algorithm is derived by employing the proposed framework for registration of a 3D model of an
anatomical structure, which was segmented from preoperative images, to consecutive axial 2D
slices of a magnetic resonance imaging (MRI) scan, which are acquired intraoperatively over time.
The process is fast and robust with respect to image noise and clutter, variations of illumination,
and different imaging modalities.
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1. INTRODUCTION AND RELATED WORK

Image registration is the process of establishing a common geometric reference frame
between two or more image data sets, i.e., bringing the images into spatial alignment. The
images are typically of the same, or similar, object or scene possibly acquired at different
times, from different perspectives or by different imaging techniques. Registration of time-
series of images is known as temporal registration.

Registration is a well-known problem in image processing and used in numerous
applications where data sets of images are compared or integrated, requiring the mapping of
the data into one coordinate system. The motivation for this work arose from the work in
medical applications, in which consecutive axial 2D slices of a magnetic resonance imaging
(MRI) scan, acquired intraoperatively over time, need to be registered to a 3D model of the
anatomical structure, segmented from preoperative images. Such slice-to-volume temporal
registration algorithm may be implemented to assist in image guided surgery and therapy.

Since 2D slices (with an infinitesimal thickness) can be viewed as partial data of 3D images,
we turn to discuss the generalized problem of registering images with partial or missing
data. Then, we may utilize the solution in order to solve the slice-to-volume problem as a
special case.

While the model image in our case is assumed to be known in advance, thus can be
preprocessed and segmented thoroughly by some algorithm (or hand segmented), the
partially observed images are typically acquired in real-time, computationally allows for
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only partial or no segmentation process. Therefore, we are interested in a model-based
registration [1], where a model is transformed to fit the observed images.

We use the model image to provide a shape prior for the underlying object in the partially
observed images. In [2], a shape prior is employed to segment medical images by
minimizing region-based functionals. We employ this approach to solve the registration of
partial data problem by applying appropriate modifications.

Temporal filtering techniques are widely used for tracking objects from video or series of
images. In [3] the authors proposed a particle filtering framework for tracking highly
deformable objects in the presence of noise and clutter by incorporating dynamic shape
priors and image statistics. In this paper, we follow a similar approach in order to solve the
temporal registration problem.

2. PROPOSED METHOD

2.1. Chan-Vese on Partial Data

An extensively used region-based active contour model for image segmentation was
proposed by Chan and Vese in [4]. In this model, an energy functional is minimized with
respect to (w.r.t.) a segmenting hypersurface I' (a curve in 2D or a surface in 3D) and a pair
of parameters c_, ¢;. The Chan-Vese model was generalized to vector-valued image
(multichannel) segmentation and to multiple regions (multiphase) segmentation [5]. We
propose a model that takes into account only values inside a subdomain on which the image
is given. As in [4], we use level sets to represent hypersurfaces implicitly.

Suppose we observe grayscale intensities of a partial image /- Q — R, on some observed
subdomain Q C » C R Let the boundary & of the observed subdomain be embedded as
the zero level set of a level set function ¥: R?— R, with negative values assigned to the
region inside and positive values assigned to the region outside. Also, let ®: R7— R be a
level set function embedding the segmenting hypersurface I", with negative values inside
and positive values outside. We define the partial data Chan-Vese energy functional as

ELIO e eil=[ (I(0)=co)? A (~0) A () dat [ (1(0)=c)? A (@) A (~¥(x) dx, (1)

where # denotes the Heaviside function. We have used the fact that # (-®) # (-¥) and #
(@) # (=) are the characteristic functions of the regions {inside(I') N Q} and {outside(I")
N Q}, respectively.

Note that it does not matter how /is extended onto the entire domain , since values outside
Q are not considered. Also, neither the subdomain Q nor the hypersurface I' needs to be
simple, keeping in mind that in the level set formulation it is inherently dealt with.

Similar to the classical Chan-Vese model, for a fixed I (thus a fixed ®), the parameters c_,
¢; that minimize the functional (1) are the mean intensities of the observed image on the
intersection of the subdomain Q with the regions inside and outside I', respectively.

We can express measures of I' in terms of Q, such as

volume inside (outside):A¥[ D)= f Y H(FO)H (—P) dx,
sum inside (outside):S ¥ [ ®]= f Y 1 (D) (—¥) dx,
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where the notations .¥ and -Trefer to the regions {inside(I') N Q} and {outside(I") N Q},
respectively. We can then write the mean intensities as

Therefore, I" has the role of partitioning the partially observed image to minimize the
intensity variances on the regions inside and outside it. Assuming that the object and the
background have different intensity ranges (but not necessarily clear edges), the optimal I is
expected to approximate the boundary of the underlying object on the given subdomain Q.
However, this does not ensure T" will fit the full boundary of the object, since on the rest of
the domain P\Q it can take any form (subject to continuity). In other words, the
segmentation of partial data problem is ill-posed since there may be more than one global
minimizer, and, as long as we are not given any other information, any one of them is as
good as the other.

In the next section, we will use the shape of the object in the model image as a prior. In
addition, we may be given observations on several subdomains, and the greater is the region
they cover, the better are the odds the hypersurface that fits all of them together is the
sought-after one.

2.2. Model-Based Registration of Partial Data

Suppose we are given, a priorf, a model image /4: ? — R, on the domain » C RY As
discussed in Section 1, we assume that /y is segmented, and the hypersurface I'g describing
the shape of the model object is extracted and embedded as the zero level set of @,

Let x€ R%be a a-dimensional spatial coordinates vector. Then, a rigid transformed model
hypersurface I'g is embedded as the zero level set of the following transformed function

Do (x;5)=Do(T; %), (8)

where T, € R(@*1X(#*1) js the rigid transformation matrix w.r.t. the pose vector s € R4 1)
comprising the pose parameters: d'translation values, a (non-zero) scale factor and -
rotation angles. Note that 7, operates on homogeneous coordinates (x7 1)7, and we denote

this linear mapping as 7' x for short. Details and explicit expressions of 75in 2D and 3D
can be found, e.g., in [6].

The model-based rigid registration of partial data problem is finding the pose vector s*,
which yields the rigid transformed model & that fits optimally, in some sense, the observed
image /on the observed subdomain Q. The problem can thus be formulated as ming £[®q(:;
9)], where £'is a functional that measures similarity, e.g., the sum of squared differences
(SSD), likelihood measurement, correlation ratio, normalized correlation, or mutual
information [1]. We use the Chan-Vese energy functional above to measure similarity. This
choice was proved to be useful for the purposes of our work. However, other functionals can
be easily incorporated into the proposed framework.

We take @ = & in the partial data Chan-Vese energy (1), so as to use the model as the shape
prior for the segmenting hypersurface, allowing only rigid transformations. By opening the
squared terms in (1) and using (2), we have that the Chan-Vese functional to be minimized
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is equivalent (up to a term which does not depend upon @) to the following function of the
pose vector

S¥s)? (¥
E\‘l" — +
9 ( A At )P

where we have used abbreviated notations to describe the dependence of the functionals on s
(e.9., by ¥ (s5) we mean s ¥[ @y (-;s)))-

The rigid pose parameters that minimize the energy function (5) lead to the optimal
transformed model hypersurface, which approximates the boundary of the object on the

observation image. Therefore, the optimal pose is the solution of the model-based rigid
registration of partial data problem.

Starting in a pose $9), we minimize (5) using gradient descent, i.e., in iteration & the pose is
sW=s""D_qv,E¥ (s*°1), with asmall a > 0. The gradient of E* using (3) is

V,EY (5)==2(c¥ (5)V,5 ¥ (5)=c ¥ (5)V,S Y () +(¥ () VA (5)+(¥ () V,AY(5), )

Taking the gradients of (2), we have that

vAt=1 [ @6(15)0).%”(—‘1’)Vﬁ)0dx,
Vos¥=% [ 16(00)# (—-¥)V,dodx, ™

where & denotes the Dirac delta function. Using (4) and the chain rule, the Ah component of
the gradient of the transformed level set function V ®q(-; s) is given by

0. (xssye Loy (1) Ty 71
8s,®°(x’s)_ aslq)o(Ts x)=VOy(T x) as,TS X, (8)
which can be computed as shown in [2].

Figure 1 shows the result of employing the proposed algorithm on an image of a Formula
One car. Note that the resulted transformed model, overlaid on the (unknown) complete
image in Figure 1(c), does not fully match the image on the unobserved subdomain.

2.3. Temporal Registration

Particle filters (PFs) [7] are sequential Monte Carlo methods based on point mass (or
“particle”) representations of probability density functions (pdf’s), which can be applied to
any state-space model (i.e., nonlinear and non-Gaussian). As the number of particles
becomes very large, this characterization becomes an equivalent representation to the usual
functional description of pdf, and PF approaches the optimal Bayesian estimate.

In our temporal registration of partial data problem, we want to track the pose of the
observed object. Therefore, we define the state vector to be the pose vector s;of the
transformed segmenting hypersurface at a discrete time £ At each time 7= 1, we observe a
noisy partial image /;on an observed subdomain Q, whose boundary is embedded in ¥
Note that the underlying object in /may have rigid dynamics over time. We use PF to
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recursively obtain p(s{¥1-,), the posterior pdf of the current pose parameters given the past
and current observed subdomains.

The state process is assumed to be Markov, i.e., p(S4S:~1) = P(S4S.~1), and the observations
are assumed to be conditionally independent given the current state, i.e., o(\Y 4So:) = (¥ 4S).
Since it is difficult to sample from the posterior pdf, we use sampling importance re-
sampling (SIR) [8], which is based upon a scheme proposed in [3], and described briefly
here.

The algorithm starts with sampling A particles (states) from the initial state distribution

P(Sp), in order to approximate it by p(so) = ﬁzzlé(so—%), where s} is the #h particle.

Also, an initial importance weight ., — 1 is set to each particle. Then, at each time step, the
particles propagate according to the stages below.

Prediction Stage—We assume the variation in the pose of the observed object over time
to have noisy characteristic, and generate

Si=s_ i, 1<i<N, (9)

where i is the predicted th particle at time ¢ and n, € R(“52+D is an identically and
independently distributed (i.i.d.) process noise sequence with known pdf.

In our experiments, we used 7;~ ~ (0, Z,), namely, a zero mean Gaussian noise vector with

a diagonal covariance matrix X, The variances o2 in the diagonal express the magnitude of
the assumed dynamic, with larger values correspond to rapid dynamics. Although PF allows
more complex dynamic model than this “random velocity”, it proved to provide plausible
results in the absence of information about the dynamics.

Update Stage—When an observation ¥ ;becomes available, we employ the model-based
registration of partial data, described above in Section 2.2, over all past and current

observations ¥ The process is applied to each particle / with its predicted state ' taken

as the initial pose vector. The resulted pose parameters are put together as the new state s’ of
the /th particle. This stage is notated as

si=free(1) (10)

where f,ﬁg stands for performing L iterations of gradient descent using (6)—(8) to minimize

t
— Y, . . .
7:17(’ T)E,;V, with 0 < ¥ <1 as a discount factor. This type of update process can be seen

as an importance sampling, as explained in [3].

We perform only L iterations, rather than running the process until convergence, since a
local minimizer hypersurface would be highly dependent upon the observations, leading the
state to lose its dependence on the previous one, and causing loss of track in case the
observations are bad. Thus, the choice of L expresses the trust in the observations, with large
values correspond to high trust in the observations, while small values correspond to high
trust in the system model (9).

The choice of the discount factor y also provides a measure of trust in the observations. A
value of ¥ ~ 1 results in approximately uniform weights assigned to the current and past
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observations, while a value of y =~ 0 results in very low weighting of past observations.
Therefore, the choice of this parameter expresses the trust in old observations and can be
used to discard them, e.g., in case of large variations in pose, where old observations are
irrelevant.

Weighting and Resampling—After all particles were sampled from (10), we are to
assign an importance weight to each one. We define the likelihood pdf, i.e., the probability
of the current observation given the state vector, as

p(¥ils) o exp {~EX(sn/ot}, @y

where o2 is another parameter that decides how much one trusts the system model versus the
observation model, with larger values in favor of the system model. The parameter depends
on the observed image statistics. If the image measurement noise is modeled as a Gaussian

noise 14 then we can take o2 to be its variance. Note that, from the discussion on the Chan-
Vese model in Section 2.1, if the pose s;provides a good segmentation of the partial data,
the energy takes small values, which by (11) results in high likelihood.

The prior pdf, i.e., the probability of the current state given the previous state vector, is
given by (9) with 7;~ ~(0, ), as

1 -1
p(silsi—1) oc exp {_E(st_st_])TZn (St—st—])}- (12)

We use (11), (12) according to [8] and get the following recursion for importance weights
; : 1 -1
! o< w!_ exp {_E:J\;(Sr)/o'%_z(st_st—])Tzn (Sr—sr—])}a (13)

N
normalized such that Zi:l‘”f:l-
The posterior pdf of the state given past and current observations is then approximated by

N i . . . I
p(si¥ie) ~ Zizlwt(s(st_st), from which an optimal estimate of the state, w.r.t. any criterion,
may be obtained. In our experiments we used the maximum a posteriori (MAP) state, which
corresponds to the state of the highest weighted particle, i.e.,

MAP_ J . . i
s, =s,, with j=arg lm;;)lcv W (14)
Finally, resampling is performed. We resample A/times according to the approximated

posterior distribution above, to have new particles {sﬁ}f\il that replace the current. This step
eliminates particles that have very low weights and concentrates on higher weighted

particles. The importance weights for the resampled particles are reset to wi=1 (thus, wﬁ_l
can be omitted from (13)).

Proc Int Conf Image Proc. Author manuscript; available in PMC 2013 June 04.
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3. EXPERIMENTS

We demonstrate the proposed method on two scenarios inspired by the application of a
slice-to-volume temporal registration. The image domain is the 3D unit box, i.e., ? = [0, 1]3
(d=3). The observations are consecutive 2D slices of the observed image, sampled equally
spaced along the zaxis, i.e., at each time fan observed image /;is sampled on a
corresponding plane z= z. We use zero-order hold to interpolate the intermediate slices
between the sampled ones, therefore, we can define the observed subdomain Q;as the 3D
volume Q;= {(x, ¥, 2): (x, ¥, 2 €0, 1] x [0, 1] x [Z, Z*1]. Initial states are uniformly
distributed in .1 and . - intervals around the translation and rotation parameters of the
model, respectively.

Brain MRI—In this example we have constructed a head model from the boundaries of 27
slices of a brain MRI scan. The observed slices are translated and rotated compared to the

model. Also, a zero mean Gaussian noise with a variance of -2=10~2 was added to each 64

x 64 slice. A variance of value o-2=10"2 was used for the pose prediction. Since the
observation is static, only /=10 particles were used, with L = 25 iterations, and a discount
factor of )= 1.0 to take into account all of the available data.

The results of the registration process at selected times are illustrated in Figures 2(a)-2(d).
Top row shows the MAP model (blue mesh) and the underlying observation (red surface).
The observed slice at each time (green plane) is also shown. Bottom row shows the
intersection (cyan contour) of the MAP model surface with the corresponding observed
slice.

Dynamic Monkey—In this example we test our method on a toy monkey model. Here, the
observation is being translated and rotated along some trajectory in 3D over 49 time steps,

during which 64x64 slices are observed. A variance of value o2=10"2 was used for the pose
prediction. Due to the dynamics, a higher number of /= 25 particles were used, with L = 25
iterations, and a discount factor of only » = 0.5 to discard previous observed slices, since
they are no longer represent the true state. Similar to Figure 2, the results of this registration
process are illustrated in Figures 3(a)-3(d). Notice the topological changes in the observed
images.

Indeed, the MAP state tracks the true state. To quantify the performance, we compute the
error between the MAP state and the ground truth state at each time. Figure 4 shows the
(normalized) error for both simulations, and illustrates the fast rate of convergence.

4. CONCLUSION AND FUTURE WORK

We presented a model-based approach to registration of partial data. A model shape is
rigidly transformed to fit the partially observed image by minimizing the Chan-Vese energy
functional. The method was then incorporated into a particle filtering framework, allowing
temporal registration of partial data.

Advantages of the method are robustness to noise and different imaging modalities. It can be
adapted to employ other region-based models, such as binary-mean or binary-variance [2]. It
took about 2sec per particle to process one slice with an un-optimized MATLAB code on a
2.93GHz Quad Core CPU machine. However, optimized implementation on a GPU may
achieve real-time performance. Disadvantages are usual problems of a gradient descent
algorithm, which can be overcome using standard techniques such as multiresolution
optimization or line search.

Proc Int Conf Image Proc. Author manuscript; available in PMC 2013 June 04.
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The framework can be generalized to capture deformations of the observation, by extracting
shape variations from a set of model images using, e.g., PCA as in [2]. Since a particle filter
allows for nonlinearity and non-Gaussianity, a complex dynamic model may be develop in
order to simulate more accurately the movements of the anatomical structure /n vivo.
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(a) Initial

(c) Final (24 iterations)

Fig. 1.
Model-based registration of partial data set. The model curve is transformed to match the
image on the observed subdomains.
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@t=1 b t=9 (c)t=17

Fig. 2.
Temporal registration of brain MRI slices (see text).
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@t=1 (b)) t=17 () t=33

Fig. 3.
Temporal registration of “dynamic monkey” slices (see text).
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Fig. 4.

Error norm between MAP state and the ground truth state.
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