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ABSTRACT
In this paper, we present a novel interactive 3D reconstruction
algorithm which renders a planar reconstruction of the scene.
We consider a scenario where the user has taken a few images
of a scene from multiple poses. The goal is to obtain a dense
and visually pleasing reconstruction of the scene, including
non-planar objects. Using simple user interactions in the form
of scribbles indicating the surfaces in the scene, we develop
an idea of 3D scribbles to propagate scene geometry across
multiple views and perform co-segmentation of all the images
into the different surfaces and non-planar objects in the scene.
We show that this allows us to render a complete and pleasing
reconstruction of the scene along with a volumetric rendering
of the non-planar objects. We demonstrate the effectiveness
of our algorithm on both outdoor and indoor scenes including
the ability to handle featureless surfaces.

Index Terms— image based modeling, interactive 3D re-
construction

1. INTRODUCTION

We consider a scenario where the user has taken a few im-
ages of a scene from varied poses. The goal is to obtain a
visually pleasing reconstruction of the scene. Automatic al-
gorithms such as [1, 2, 3], etc have been shown to work well
with a large collection of images. When the number of input
images is restricted, these automatic algorithms fail to pro-
duce a dense plausible reconstruction. There are a number of
multiview stereo algorithms which try to obtain a dense depth
map for the scene from a set of images [4]. However, multi-
view stereo algorithms are known to be slow and with a small
set of images the reconstruction is usually incomplete, leaving
holes on textureless surfaces and specular reflections. In order
to improve the reconstruction, some algorithms make planar
approximations to the scene [5, 6]. This allows for more visu-
ally pleasing reconstructions. However, these algorithms use
features such as strong edges and lines which may be absent
in textureless surfaces or non-planar objects (like walls, trees,
people, etc). This has led to interactive algorithms.

Prior interactive reconstruction algorithms, require in-
volved user-interactions ranging from providing feature cor-
respondence, to marking edges, plane boundaries and detailed
line models of the scene [7, 8, 9]. In this paper, we present a
novel scribble based interactive 3D reconstruction algorithm

where we relax the interactions to mere scribbles and render
a planar reconstruction of the scene. In a typical scene, non-
planar objects occluding the scene can result in holes in the
scene reconstruction. The strength of our approach is the abil-
ity to use surface-level correspondence across multiple views
to create composite texture maps for the scene thereby render-
ing pleasing planar reconstructions of the scene. Moreover,
we use this correspondence to obtain volumetric reconstruc-
tions of the occluding object. All of this involves very simple
interactions in the form of scribbles.

Scribbles have been used in interactive algorithms in the
past. They were first used by Boykov et al. for interactive seg-
mentation to indicate foreground and background [10]. Ba-
tra et al. used scribbles for interactive cosegmentation [11],
which was applied to object of interest 3D modeling by Kow-
dle et al. [12]. Srivastava et al. improve the 3D model ob-
tained using their Make3D algorithm by using scribbles to
enforce coplanarity in their MRF formulation [13]. Sinha et
al. used scribbles for texture synthesis where scribbles over
an occluding object helps remove the occluding object in the
visualization by using texture from the other views [9]. We
use scribbles from the user to indicate the surfaces and non-
planar objects in the scene. We believe we are the first to use
these scribbles in a multi-class segmentation framework.

An overview of our algorithm is illustrated in Fig.1. Our
algorithm allows the user to pick any image and provide sim-
ple scribbles to indicate planar surfaces and non-planar ob-
jects in the scene. We use the scribbles to learn an appearance
model for each surface and then, formulate the multi-class
segmentation task as an energy minimization problem over
superpixels, solved via graph-cuts. This scene segmentation
along with the sparse 3D point cloud from structure-from-
motion (SFM) helps define the geometry of the scene. We
introduce an idea of 3D scribbles which helps propagate this
scene geometry to the other images to co-segment the im-
ages into the various planes and objects in the scene. The
scene co-segmentation helps obtain a composite texture map
for the scene eliminating holes due to occluding objects, giv-
ing a pleasing planar reconstruction of the scene. In addition
to this, we use the co-segmentation of non-planar objects in
the scene to obtain a visual hull for the occluding object [12],
which is rendered as part of the prior planar reconstruction of
the scene. We now describe our approach in detail.



(a) (b) (c) (d)
Fig. 1. Overview of system: (a) Input images (Image selected by user shown in yellow box); (b) User interactions to indicate the surfaces
in the scene; (c) Scene co-segmentation of all images by using the idea of 3D scribbles to propagate scene geometry; (d) Some sample novel
views of the reconstruction of the scene, with and without texture (Best viewed in color).

2. ALGORITHM

We first run the structure-from-motion algorithm by Snavely
et al. [1] on the images to recover the camera projection ma-
trices for all the views, a sparse 3D point cloud and the set
of the points visible by each camera. We now describe the
algorithm starting from the user scribbles, to how we obtain
the final 3D reconstruction via scene co-segmentation.

2.1. Scribbles to scene segmentation

We have developed a java based user interface1 using which
the user selects any image in the group and provides scribbles
on the image with different colors indicating different sur-
faces in the scene as shown in Fig.1(b). Given these scribbles,
we cast the multiclass labeling problem as an energy min-
imization problem over a graph of superpixels2 constructed
over the image scribbled on. Specifically, consider an image-
scribble pair D = {X,S}, where the image X is represented
as a collection of n sites (superpixels) to be labeled, X =
{X1, X2, . . . , Xn}. The user provides a set of scribbles S
on the image with multiple labels (say user defines p sur-
faces in the scene), which is represented as the partial set
of labels for these sites S = {S1, S2, . . . , Sn} where, Si =
{φ, 1, 2, . . . , p}. We build a graph, G = (V,E), over the su-
perpixels, with edges between adjacent superpixels.

Using these labeled sites, we learn an appearance model
A. We then define an energy function over the image as:

E(X : A) =
∑
i∈V

Ei(Xi : A) + λ
∑

(i,j)∈E

Eij (Xi, Xj) , (1)

where the first term (data term) indicates the cost of assign-
ing a superpixel to one of the labels, while the second term
(smoothness term) is used for penalizing label disagreement
between neighbors. The colon (:) in the equation indicates
that the term is dependent on the learnt appearance model.

Data (Unary) Term. Our appearance model consists of
a Gaussian Mixture Model for each of the p surfaces labeled,
i.e, A = {GMM1, . . . ,GMMp}. Specifically, we use colour
features extracted from superpixels [12] on the labeled sites
and fit GMMs for the corresponding classes. The data terms
for all sites are then defined as the negative log-likelihood of
the features given the class model. We set the unary term of
the superpixels labeled by the user to −∞ (a large negative
value) as hard constraints in the energy minimization.

1iScribble, http://chenlab.ece.cornell.edu/projects/iScribble/iScribble.html
2We use mean-shift [14] to break an image to about thousand superpixels.

Smoothness (Pairwise) Term. We use the commonly
used Potts model to model the smoothness term,

Eij(Xi, Xj) = I (Xi 6= Xj) exp(−β), (2)

where I (·) is an indicator function.
Finally, we use graph-cuts (with α-expansion) to compute

the MAP labels for all superpixels, using the implementation
by Bagon [15] and Boykov et al. [16, 17, 18]. The result
segments the image into the different surfaces labeled by the
user as shown in Fig.2(a); we call this scene segmentation.
The parameters λ and β were empirically chosen and fixed
for all scenes. This was found to work well in practice.

2.2. Scene segmentation to 3D geometry

Using SFM we have a sparse 3D point cloud and the 2D fea-
ture correspondence across the images for this point cloud.
We therefore know the subset of 3D feature points seen from
the current view (scribbled image). This information helps
transfer the labels from the 2D scene segmentation to the 3D
points, based on which scene segment the 3D points project
onto. We now use RANSAC-based plane-fitting on the la-
beled 3D points to estimate the plane parameters of the la-
beled planes enforcing that the plane normal points outwards
i.e. towards the camera looking at the scene.

We note here that, there may be featureless surfaces like
the wall in the scene, which lacks enough cues to be recon-
structed. The algorithm then prompts the user for some sim-
ple additional interactions to indicate the edges shared by this
surface with the other surfaces in the scene by easily scrib-
bling two lines across the edge shared as shown in black el-
lipses in Fig.2(a). We obtain an estimate of the plane param-
eter by enforcing that the boundary points lie on the corre-
sponding connecting planes, thus, resulting in globally op-
timal plane parameters. However, if the featureless surface
shares just one edge with another plane, we make perpendic-
ularity assumptions for that surface to choose the most prob-
able plane amongst the infinite planes which can share that
edge. This assumption has been shown to work well [19] and
would be the best possible estimate, given the support.

2.3. 3D scribbles and scene co-segmentation

Image co-segmentation has gained a lot of popularity in the
community [20, 21, 11]. However, co-segmentation of the
multiple surfaces in the scene is not as trivial as the two class
image co-segmentation since, it is hard to define features dis-
criminative between geometric surfaces. However, when a



(a) (b) (c) (d)
Fig. 2. Scene co-segmentation: (a) Scene segmentation with user interaction indicating connected planes (white scribbles in black ellipses);
(b) 3D scribbles inferred from the segmentation; (c) 3D scribbles warped onto the other images to propagate scene geometry (Note: scribbles
have been increased to improve visibility; the scribbles used for the results are in Fig.1(b)); (d) Scene co-segmentation (Best in color).

user provides scribbles on an image, they are doing so based
on their perception of the geometry of the scene, i.e. they are
not just indicating surfaces and objects in that image but, are
giving us cues about the 3D scene geometry common across
all the images. This is the common thread between the images
we exploit to perform the co-segmentation.
3D scribbles. Using the estimated plane parameters and the
camera projection matrix of the scribbled image, we develop
the idea of 3D scribbles. Let the projection matrix of camera
i be defined as Mi = KiRi(I−Ci) where, Ki is the intrinsic
matrix,Ri is the rotation matrix andCi is the camera center in
the world co-ordinate system. Consider, a 2D scribble point
s1,j seen from Cam1, on a segment which corresponds to the
plane l parameterized by [n̂l dl] where, n̂l is the plane normal
and dl is the plane constant. The projection of this scribble
point on another image seen from Cam2 (s2,j) is given by,

s2,j = K2R2

(( (−dl − n̂l.C1)

n̂l.([K1R1]−1s1,j)
[K1R1]

−1s1,j + C1

)
− C2

)
We take care to avoid warping the scribbles onto occluded

planes by using the scene geometry and camera pose. For
example, we can eliminate many of the warped scribbles by
considering only the planes visible from a particular view.
Scene co-segmentation. The resulting scribbles on all the
images are as shown in Fig.2(c). Using these scribbles as
hard constraints on all the images, we now extend the energy
minimization based multi-class labeling described in Sec.2.1
to all the images thereby achieving co-segmentation of all the
images into the multiple scene classes Fig.2(d).

2.4. Visualization

We develop a back-projection algorithm using the equation
above, to evaluate the point of intersection of a ray from the
camera center through every pixel on the image plane, and the
estimated 3D surface. Using these 3D points, we generate a
mesh for the scene with the corresponding image texture and
render a texture mapped planar reconstruction of the scene as
shown in Fig.1(c), enabling pleasing fly-throughs.

2.5. Rendering non-planar objects

The algorithm thus far renders a planar reconstruction of the
scene. In case of non-planar objects, we get an input from the
user to indicate these objects, as shown in the blue ellipse in
Fig.5(c). This tells the algorithm which surface corresponds
to the non-planar object. We then estimate an approximate
planar proxy for the object, which helps position the object
as part of the rendered scene. Recent automatic approaches
[22, 23] can also be used to identify non-planar regions.

(a) (b)
Fig. 3. Non-planar objects: (a) Composite texture map for the scene
(top) allows covering up holes due to occlusions (ellipse); (b) Novel
views of the reconstruction with a volumetric model of the tree.

Object co-segmentation. At this stage, the algorithm knows
which surface indicated by the user corresponds to the non-
planar object. We treat the scribbles corresponding to the non-
planar object as foreground scribbles and all other scribbles
as background scribbles and use ideas from prior work by
Kowdle et al. [12] to obtain a 3D visual hull of the non-planar
object via a 2-class co-segmentation, which is rendered using
an independent mesh. The scene co-segmentation also allows
us to create a composite texture map for the scene covering
up holes due to occlusions as shown in Fig.3(a).

Once the algorithm generates the 3D reconstruction, the
user can provide more scribbles to indicate new or previously
occluded planes, and improve the result, thus closing the loop
on our interactive 3D reconstruction algorithm.

(a) (b)

(c) (d)
Fig. 4. More results: Novel views of the reconstructed scenes.

3. RESULTS AND DISCUSSIONS

We test our algorithm on a number of scenes (both indoor
and outdoor) rendering pleasing, complete reconstructions.
Fig.1(d) shows the result on a scene with featureless surfaces.
Fig.4 how more results on such planar scenes. The algorithm
also render non-planar objects as we show with the tree in the
outdoor scene in Fig.3(b) and the person in the indoor scene
in Fig.4(d). Please see video summary3 with fly-through of
the 3D reconstructions.
Comparison. We compare our results with other publicly
available algorithms to reconstruct a scene. Using SFM [1],

3Video Summary: http://chenlab.ece.cornell.edu/projects/Interactive_3D



(a) (b) (c) (d) (e)
Fig. 5. Outdoor scene with occlusion: (a) Input images (Image selected by user shown in yellow box); (b) User interactions; (c) Resulting
scene segmentation with the additional interactions to indicate surface connectedness (white scribbles shown in black circles) and non-
planar objects (magenta scribble shown in blue scribble); (d) Object co-segmentation (foreground non-planar object in yellow); (e) Scene
co-segmentation by using 3D scribbles to propagate scene geometry (Best viewed in color).

on a huge image collection can render dense point clouds
however, in this scenario, the point cloud is very sparse.
Multi-view stereo algorithms like patch-based multi-view
stereo (PMVS)4 render a denser reconstruction. However,
this fails to render a complete reconstruction, leaving holes
and rendering inaccurate geometric reconstructions, in the
presence of textureless surfaces and specular surfaces. As we
show in Fig.6, the results from our interactive reconstruction
algorithm is more complete and geometrically accurate.

(a) (b)
Fig. 6. Comparison with patch-based multi-view stereo: The top
images show the reconstruction generated by PMVS with the errors
shown in black ellipses, while bottom images show our results with
corrected reconstructions shown in blue ellipses (Best in color).

To compare our approach with other interactive works, we
show our result on the play-house dataset of Sinha et al. [9], in
Fig.4(c). We note that prior works require tedious user inter-
actions to mark the planes in the scene or provide line models
of the scene, while we achieve good results using limited and
simple scribbles to indicate the surfaces. Moreover, unlike
prior work, the proposed work can reconstruct non-planar ob-
jects like the tree, making the reconstruction more complete.

4. CONCLUSIONS

In this paper, we present a novel interactive 3D reconstruction
algorithm which uses simple user interactions in the form of
scribbles to indicate the surfaces and non-planar objects in
the scene. We introduce the idea of 3D scribbles to propagate
the scene geometry and co-segment the scene across multiple
views. We render a planar reconstruction of the scene and in-
troduce the idea of overlaying a volumetric rendering of the
occluding non-planar object as part of the scene thus render-
ing a more complete reconstruction of the scene.
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