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ABSTRACT

We define a color monogenic wavelet transform. This is based
on the recent grayscale monogenic wavelet transform and a non-
marginal extension to color signals. To our knowledge, wavelet
based color image processing schemes have always been made by
using a grayscale tool separately on color channels. This may have
some unexpected effect on colors because those marginal schemes
are not necessarily justified. Here we propose a definition that
considers a color (vector) image right at the beginning of the mathe-
matical definition and so brings an actual color wavelet transform -
which has not been done so far to our knowledge. This so provides
a promising multiresolution color geometric analysis of images.

Index Terms— Color Wavelets, Analytic, Monogenic, Wavelet
transforms, Image analysis

1. INTRODUCTION

Wavelets have been widely used for handling images for more
than 20 years. It seems that the human visual system sees images
through different channels related to particular frequency bands and
directions; and wavelets provide such decompositions. Since 2001,
the analytic signal and its 2D generalizations have brought a great
improvement to wavelets [1, 2, 3] by a natural embedding of an
AM/FM analysis in the subband coding framework. This yields an
efficient representation of geometric structures in grayscale images
thanks to a local phase carrying geometric information complemen-
tary to an amplitude envelope having good invariance properties. So
it codes the signal in a more coherent way than standard wavelets.
The last and seemingly most appropriate proposition [3] of analytic
wavelets for image analysis is based on the monogenic signal [4].

In parallel a color monogenic signal was proposed [5] as a math-
ematical extension of the monogenic signal; paving the way to non-
marginal color tools especially by using geometric algebra and above
all by considering a color signal right at the foundation of the math-
ematical construction.

We define here a color monogenic wavelet transform that ex-
tends the monogenic wavelets of [3] to color. These analytic wave-
lets are defined for color 2D signals (images) and avoid the clas-
sical pitfall of marginal processing (grayscale tool used separately
on color channels) by relying on a sound mathematical definition.
We may so expect to handle coherent information of multiresolu-
tion color geometric structure; which would make easier any wave-
let based color image processing. To our knowledge color wavelets
have not been proposed so far.

We first give a technical study of analytic signal/wavelets with
the intent to popularize them since they rely on non-trivial concepts
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of geometric algebra, complex/harmonic analysis, as well as non-
separable wavelet frames. Then we describe our color monogenic
wavelet transform.

Notations :

2-vector coordinates : &= (x,y) , w=(w1,w2) € R*; k € Z2
Euclidean norm : ||z|| = /22 + y?

Complex imaginary number : j € C

Argument of a complex number : arg

Convolution symbol : x*

Fourier transform : F

2. ANALYTIC SIGNAL AND 2D GENERALIZATION

An analytic signal s is a multi-component signal associated to a
real signal s to analyze. The definition is well known in the 1D case
where s4(t) = s(t) + 7 (h * s)(t) is the complex signal made of s
and its Hilbert transform (with h(t) = ).

The polar form of the 1D analytic signal provides an AM/FM
representation of s with |s.4| being the amplitude envelope and ¢ =
arg (sa) the instantaneous phase. This classical tool can be found
in many signal processing books and is used in communications for
example.

Interestingly we can also interpret the phase in terms of signal
shape i.e. there is a direct link between the angle ¢ and the local
structure of s. Such a link between a 2D phase and local geomet-
ric structures of images would be very attractive in image process-
ing. That is why there were several attempts to generalize it for 2D
signals; and among them the monogenic signal [4] seems the most
advanced since it is rotation invariant.

The Monogenic Signal

Without going beyond strictly needed details we here review the
key points of the fundamental construction of the monogenic signal;
which will be necessary to understand the color extension.

The definition of the 1D case given above can be interpreted in
terms of signal processing : the Hilbert transform makes a “pure
5-dephasing”. But such a dephasing is not straightforward to de-
fine in 2D (same issue with many 1D signal tools) so let us look
at the equivalent complex analysis definition of the 1D analytic sig-
nal. It says that s4 is the holomorphic extension of s restricted to
the real line. But complex algebra is impeding for generalizations to
higher dimensions. To bypass this limitation we can see a holomor-
phic function like a 2D harmonic field that is an equivalent harmonic
analysis concept involving the 2D Laplace equation Af = 0. It so

can be generalized within the framework of 3D harmonic fields by
using the 3D Laplace operator Az = (% + % + %) The whole
generalization relies on this natural choice and remaining points are
analogous to the 1D case (see [4] for more details). Note that in



Felsberg’s thesis this construction is expressed in terms of geometric
algebra but here we avoided it for simplicity’s sake. Finally the 2D
monogenic signal s associated to s is the 3-vector valued signal :

s(x)
SM(.’B) = W*s(m) (1
sra(x) = W * s(x)

salx) =

Where s,1 and s,2 are analogous to the imaginary part of the com-
plex 1D analytic signal. Interestingly, this construction reveals the
two components of a Riesz transform (that is convolution of a func-
tion by the two kernels Wamd W) in the same way that
the 1D case exhibits a Hilbert transform. Note that we get back to
a signal processing interpretation since the Riesz transform can also
be viewed like a pure 2D dephasing. In the end, by focusing on the
complex analysis definition of the analytic signal we end up with a
convincing generalization of the Hilbert transform.

Now recall that the motivation to build 2D analytic signals arises
from the strong link existing between the phase and the geometric
structure. To define the 2D phase related to the Riesz transform the
actual monogenic signal must be expressed in spherical coordinates
that yield the following amplitude envelope and 2-angle phase :

Amplitude : 524352, +s2, | s=Acosp
Orientation: 6 = arg (sy1 +J $r2) | sr1 = Asingpcosf (2)
IDPhase: @ = arccos () Sr2 = Asinpsin 6

Felsberg shows a direct link between the angles 6 and ¢ and the
geometric local structure of s. The signal is so expressed like an “A-
strong” 1D structure with orientation 6. ¢ is analogous to the 1D
local phase and indicates if the structure is rather a line or an edge.
A direct drawback is that intrinsically 2D structures are not handled.
Yet this tool found many applications in image analysis from contour
detection to motion estimation (see [3] and references therein p. 1).

From a signal processing viewpoint the AM/FM representation
provided by an analytic signal is accordingly well suited for narrow-
band signals. That is why it seems natural to embed it in a wavelet
transform that performs subband decomposition. We now present
the monogenic wavelet analysis proposed in [3].

3. MONOGENIC WAVELETS

So far there is one proposition of computable monogenic wavelets in
the literature [3]. It provides 3-vector valued monogenic subbands
consisting of a rotation-covariant magnitude and this new 2D phase.
This representation - specially defined for 2D signals - is a great
theoretic improvement of the complex and quaternion wavelets [1,
2]; as well as the monogenic signal itself is an improvement of its
complex and quaternion counterparts.

The proposition of [3] consists of one real-valued “primary”
wavelet transform in parallel with an associated complex-valued
wavelet transform. Both transforms are linked each other by the
Riesz transform so they carry out a multiresolution monogenic anal-
ysis. We end up with 3-vector coefficients forming subbands that
are monogenic.

3.1. Primary transform

The primary transform is real-valued and relies on a dyadic pyra-
mid decomposition tied to a wavelet frame. Only one 2D wavelet
is needed and the dyadic downsampling is done only at the low fre-
quency branch; leading to a redundancy of 4:3. The scaling function

¢~ and mother wavelet ¢ are defined in the Fourier domain :
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W(@) = (~8)% 2y(22) )
Note that ¢, is a cardinal polyharmonic spline of order y and spans
the space of those splines with its integer shifts. It also generates -
as a scaling function - a valid multiresolution analysis. In this paper
we set v=1.00001 that gave satisfying experimental results.

This particular construction is made by an extension of a wavelet
basis (non-redundant) related to a critically-sampled filterbank. This
extension to a wavelet frame (redundant) adds some degrees of free-
dom used by the authors to tune the involved functions. In addition
a specific subband regression algorithm is used at the synthesis side.
The construction is fully described in [6].

3.2. The monogenic transform

The second “Riesz part” transform is a complex-valued extension of
the primary one. We define the associated complex-valued wavelet
by including the Riesz components :

W = (%“r—mng *w(w)> +3 (m . w(w)) )

It can be shown that it generates a valid wavelet basis and that it can
be extended to the pyramid described above. The joint consideration
of both transforms form monogenic subbands from which can be
extracted the amplitude and phase for an overall redundancy of 4:1.

So far no applications of the monogenic wavelets have been pro-
posed. In [3] a demonstration of AM/FM analysis is done with fine
orientation estimation and gives very good results in terms of co-
herency and accuracy. Accordingly this tool may be rather used for
analysis tasks than processing.

Motivated by the powerful analysis provided by the monogenic
wavelet transform we propose now to extend it for color images.

4. COLOR MONOGENIC WAVELETS

We define here our proposition that combines a fundamental gener-
alization of the monogenic signal to color with the monogenic wave-
lets described above. The challenge is to avoid the classical marginal
definition that would be applying a grayscale monogenic transform
on each of the three color channels of a color image. We believe
that the monogenic signal has a favorable theoretical framework for
a color extension and this is why we propose to start from this par-
ticular wavelet transform rather than from a more classical one.

The color generalization of the monogenic signal is expressed
within the geometric algebra framework. This algebra is very gen-
eral and embeds the complex and quaternion as subalgebras. Its el-
ements are “multivectors” naturally linked with various geometric
entities. The use of this fundamental tool is gaining popularity in
the literature because it allows rewriting sophisticated concepts with
simpler algebraic expressions and so paves the way to innovative
ideas and generalizations in many fields.

For simplicity’s sake and since anyway we would not have
enough space to present the fundamentals of geometric algebra we
here express the construction in classical terms; as we already did
section 2. Yet we may sometimes point out some necessary specific
mechanisms but we refer the reader to [4, 5] for further details.



4.1. The Color Monogenic Signal

Starting from Felsberg’s approach that is originally expressed in the
geometric algebra of R3; the extension proposed in [5] is written
in the geometric algebra of R® for 3-vector valued 2D signals of
the form (sr,sa,ss). By simply increasing the dimensions we
can embed each color channel along a different axis and the orig-
inal equation from Felsberg involving a 3D Laplace operator can be

) é ) é )
+m+az3+m+515)-

generalized in 5D with A5 = (E

Then the system can be simplified by splitting it into three sys-
tems with a 3D Laplace equation, reducing to applying Felsberg’s
condition to each color channel. At this stage appears the importance
of geometric algebra since an algebraic simplification between vec-
tors leads to a 5-vector color monogenic signal that is non-marginal.
Instead of naively applying the Riesz transform to each color chan-
nel, this fundamental generalization carries out the following color
monogenic signal : sa = (Sgr, Sa, $B, Sr1, Sr2) Where sy1 and sr2
are the Riesz transform applied to sgr+sa+sp.Note that this simple
sum of color channels is obtained by calculation. This is coherent
with the idea that s,1 and s,2 carry structural information - indepen-
dent of color.

Now the color extension of Felsberg’s monogenic signal is de-
fined let us construct the color extension of the monogenic wavelets.

4.2. The Color Monogenic Wavelet Transform

We can now define a wavelet transform whose subbands are color
monogenic signals. The goal is to obtain vector coefficients of the
form (cr, ca, ¢B, ¢r1, Cr2) such that ¢,1 = W x(cr+ca+cB)
andcﬂ:m * (cr +ca+cB).

It turns out that we can very simply use the transforms presented
above by applying the primary one on each color channel and the
Riesz part on the sum of the three. The five related color wavelets
illustrated Fig. 1 and forming one color monogenic wavelet 1 4 are :

(0 0 0
Yr=1| 0 Y= ¥ Yyp=| 0 (6)
0 0 P
277Em\|3 * P 2w\§m|\3 * P
V1= | xaE ¥ ¥ Yr2 = | oaE ¥ ¥ @)
x Y
anllat® * ¥ aellar® * ¥

d)A - (wR B d)G 5 ":[}B B 1/1r1 ) wTQ) (8)

We then get 5-vector coefficients verifying our conditions and so
forming a color monogenic wavelet transform. The associated de-
composition is described by the diagram Fig. 2. This provides a
multiresolution color monogenic analysis made of a 5-vector valued
pyramid transform.The construction can be viewed like a vector ex-
tension of the scalar wavelet ¢. The 5 decompositions of two images
are shown Fig. 3 from left to right. Each one consists of 4 juxtaposed
image-like subbands resulting from 3-level decomposition.

Let us look at the first 3 graymaps. These are the 3 primary trans-
forms cr, cg and cp where white (resp. black) pixels are high posi-
tive (resp. negative) values. Note that our transform is non-separable
and so provides at each scale only one subband related to all orien-
tations. We are not subjected to the arbitrarily separated horizontal,
vertical and diagonal analyses of usual wavelets. This advantage is
even greater in color. Whereas marginal separable transforms show
3 arbitrary orientations within each color channel - which is not eas-
ily interpretable - the color monogenic wavelet transform provides a
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Fig. 1. Space representation of the 5 color wavelets.
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Fig. 2. Color MWT scheme. Each color channel is analyzed with
primary wavelet transform v; and the sum “R + G + B” is analyzed
with the “Riesz part” wavelet transform (01 and 12 blocs).

more compact energy representation of the color image content re-
gardless of the local orientation. The color information is well sep-
arated through cg, cg and cp : see that blue contours of first image
are present only in cg. And in each of the 3 decompositions it is
clear that every orientation is equally represented all along the round
contours. That is different from separable transform that privileges
particular directions. The multiresolution framework makes the hori-
zontal blue low frequency structure of second image be coded mainly
in the third scale of cp.

But the directional analysis is not lost thanks to the Riesz part
that completes this representation. Now look at the “2-in-1" last
decomposition forming the Riesz part. It is displayed in one color
map where the geometric energy \/c2; + c2, is encoded into the
intensity (with respect to the well known HSV color space) and the
orientation arg (¢,1+jcr2) () is encoded in the hue (e.g. red is for
{0, 7} and cyan is for £7). This way of displaying the Riesz part
well reveals the provided geometric analysis of the image.

The Riesz part makes a precise analysis that is local both in
space and scale. If there is a local color geometric structure in the
image at a certain scale the Riesz part exhibits a high intensity in
the corresponding position and subband. This is completed with an
orientation analysis (hue) of the underlying structure. For instance
a horizontal (resp. vertical) structure in the image will be coded by
a cyan (resp. red) intense point in the corresponding subband. The
orientation analysis is strikingly coherent and accurate. See for ex-
ample that color structures with constant orientation (second image)
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Fig. 3. Color MWT of images. The two components of the Riesz part are displayed in the same graphic with the magnitude of ¢,1 + jcr2
encoded in the intensity and argument (local orientation) encoded in the hue.

exhibit a constant hue in the Riesz part over the whole structure.

Note that low intensity corresponds to “no structure” i.e. where
the image has no geometric information. It is coherent not to dis-
play the orientation (low intensity makes the hue invisible) for these
coefficients since this data has no sense in those cases.

In short the color and geometric information of the image are
well separated from each other and the orientation analysis is very
accurate. In addition the invariance properties of the primary and
Riesz wavelet transforms are kept in the color extension for a slight
overall redundancy of 20:9~2.2.

5. CONCLUSION

We define a color extension of the recent monogenic wavelet trans-
form proposed in [3]. This extension is non-marginal since it takes
care of considering a vector signal at the very beginning of the fun-
damental construction and leads to a definition basically different
from the marginal approach. This has not been proposed before to
our knowledge. The use of non-separable wavelets joint with the
monogenic framework allows for a good orientation analysis well
separated from the color information. This color transform can be a
great color image analysis tool thanks to this good separation of in-
formation through various data. We are currently working on color
denoising by using this transform.

Although it is not marginal the color generalization has a
marginal style since it reduces to apply the Riesz transform on
the intensity of the image. So the geometric analysis is done without
considering the color information and it would be much more attrac-
tive to have a complete representation of the color monogenic signal

into magnitude and phase(s) with color/geometric interpretation.

Another limit is the restriction to analysis applications. The re-
dundancy of the grayscale transform makes it not well suited a priori
to image compression.
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