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ABSTRACT

In this paper, we present a faster version of the newly pro-
posed Multiple Birth and Cut (MBC) algorithm. MBC is an
optimization method applied to the energy minimization of an
object based model, defined by a marked point process. We
show that, by proposing good candidates in the birth step of
this algorithm, the speed of convergence is increased. The
algorithm starts by generating a dense configuration in a spe-
cial organization, the best candidates are selected using the
belief propagation algorithm. Next, this candidate configura-
tion is combined with the current configuration using binary
graph cuts as presented in the original version of the MBC
algorithm. We tested the performance of our algorithm on
the particular problem of counting flamingos in a colony, and
show that it is much faster with the modified birth step.

Index Terms— point process, multiple birth and cut, be-
lief propagation, graph cut, multiple object detection

1. INTRODUCTION

Multiple objects detection from a still image is a very chal-
lenging problem, finding applications in different domains
such as counting crowd, evaluation of tree populations, roads
extraction, in urban planning and military intelligence. A re-
cent object based method embedded in a Marked Point Pro-
cess (MPP) framework has proved to be efficient for solving
many such challenging problems, especially on high resolu-
tion images. The MPP modeling is based on a configuration
space of the objects of interest, on which a Gibbs energy func-
tion is defined [1]. The solution is then obtained by minimiz-
ing this energy.

Initially, Markov random field samplers, either stochastic
or deterministic, were based only on standard moves within
the framework of Metropolis Hasting, where only one pixel
changes at a time. During the last decade, multiple moves
methods emerged and most of them are based on graph cut
techniques [2]. MPP samplers have also evolved from simple
perturbations (standard moves) with methods like Reversible
Jump Markov Chain Monte Carlo method [3] to multiple per-
turbations using the Multiple Birth and Death (MBD) algo-

rithm [4]. Very recently, an optimization method based on
graph cuts, named Multiple Birth and Cut was introduced
in [5]. The authors proposed an iterative algorithm to explore
the configuration space, where they used a special graph to
choose between current objects and newly proposed ones us-
ing binary graph cuts. Although the MBC method presented
in [5] is slower than the MBD algorithm, it has very promis-
ing advantages such as getting rid of the simulated annealing
framework and related parameters.

Our main contribution herein is a modification related
to the birth step in the MBC algorithm, which consists of
proposing relevant objects leading to a faster convergence.

2. MARKED POINT PROCESS

2.1. Point Process

Definition. A point process is a random variable whose real-
izations are random configurations of points. Let us consider
a point processX taking values inK = [0, Imax]× [0, Jmax],
a closed, connected subset of R2. X is a measurable mapping
from a probability space (Ω,A,P) to the set of configurations
of points of K. This mapping defines a point process.

Marked Point Process. Point processes were introduced
in image processing because they allow to easily model
scenes made of objects. Objects can have simple or com-
plex shapes. In this paper for instance, each flamingo (ob-
ject) is modeled by an ellipse. Let M be the mark space,
M = [amin, amax] × [bmin, bmax] × [0, π[, where a and
b are the major and the minor axis respectively, for which
we define1 a minimum and a maximum value. The ge-
ometrical parameters of the shape represent the mark mi

associated to each point xi. Therefore, an object is defined
as ωi = (xi,mi) ∈ K ×M , where xi represents the object
location and mi its mark.

We consider a marked point process with points in K and

1Knowing the average object dimensions, its parameters min and max
values are defined based on the image resolution. The maximum dimension
of a flamingo in reality (from a top view) is 80cm.



with marks in M , the configuration space is then defined as:

Ω =

∞[
n=0

Ωn, Ωn = {{ω1, . . . , ωn} ⊂ K ×M} , (1)

where Ωn is the subset of configurations containing exactly n
objects, and ω = {ωi, i = 1, . . . , n}. We define a reference
measure as the product of the Poisson measure ν(ω) and the
Lebesgue measures on the mark space:

dπr(ω) = dν(x)
n∏

i=1

(dµ(mi)) ,

The MPP is then defined by a density with respect to this mea-
sure:

dπ(ω) = f(ω)dπr(ω). (2)

Markov Point Process. We consider a Gibbs/Markov
process defined by local interactions between objects. The
density of the process is given by:

f(ω) =
1

Z
exp[−U(ω)] =

1

Z
exp[−(Ud(ω) + γpUp(ω))] , (3)

where Up is the prior energy which takes into account the
interactions between geometric objects, Ud is the data energy
to fit the configuration to the image, Z is the partition function
and γp is the weight of the prior term. The searched solution
corresponds to the minimum of the energy U(ω).

2.2. Prior

We define a non-overlapping interaction to avoid multiple de-
tection of the same object. Let A(ωi, ωj) ∈ [0, 1] represents
the overlapping coefficient between two objects, defined as
the normalized area of intersection, as proposed in [6]:

A(ωi, ωj) =
A(ωi ∩ ωj)

min (A(ωi), A(ωj))
, (4)

where A(ωi) is the area of object ωi. We forbid any config-
uration with overlapping coefficient greater than 10%. The
total prior energy of the configuration is then given by [5]:

Up(ω) =
∑

(ωi∼ωj)∈ω

up(ωi, ωj),

where up(ωi, ωj) =∞ if A(ωi, ωj) > 0.1 and 0 otherwise.

2.3. Data term

Each flamingo can be modeled as a bright ellipse surrounded
by a darker background. We want to evaluate the contrast be-
tween the ellipse interior and the background, to evaluate the
fitness of a proposed object. For an object ωi = (xi,mi),
with marks mi = (a, b, θ), we define F(ωi) as the subset of
K, between the border of ωi and a concentric ellipse ω′i, with

marks m′i = (a + ρ, b + ρ, θ), which represents the back-
ground. To evaluate the contrast, assuming Gaussian distri-
butions, we computing statistics on the image inside respec-
tively the ellipse ωi and F (ωi)). We estimate the means and
standard deviations of the object (µ1, σ1) and the correspond-
ing background (µ2, σ2), we then compute the corresponding
Bhattacharya distance dB . The total data term energy is given
by:

Ud(ω) =
X

ωi∈ω

ud(ωi), (5)

where ud(ωi) = Qd(dB(ωi),F(ωi)), where Qd(dB) ∈ [0, 1]
is a quality function which gives positive values to small dis-
tances and negative values when dB(ωi) is greater than a
given threshold [6].

3. MULTIPLE BIRTH AND CUT

To minimize the energy U(ω), an algorithm based on a graph
cut (MBC) has been recently proposed [5]. It consists of it-
erating a birth step, where new objects are added to the cur-
rent configuration and a cut step, keeping the best subset of
objects among the current and new together. The speed limi-
tation of this algorithm [5] mainly comes from the quality of
the proposed configuration at each iteration. Since the pro-
posed configuration respects the non-overlapping constraint
from the beginning, it can not benefit from the birth map2 and
consequently requires a large number of iterations.

In this paper, we propose to insert a selection phase in
the birth step, which allows generating and inserting many
more objects in the birth step, thus reducing the number of
iterations. The algorithm is summarized in algorithm 1.

Algorithm 1 Multiple Birth and Cut
1: n← 0 , R← const
2: generate ω′ , ω[0] ← ω′

3: repeat
4: Birth: generate Γ
5: ω′ ← Select from(Γ)
6: Cut: ω[n+1] ← Cut(ω[n] ∪ ω′)
7: n← n+ 1
8: until converged

3.1. Selection Phase

In the birth step, the algorithm generates a dense configura-
tion Γ. This configuration has a special organization, where
Γ = {X0, X1, . . . , Xn} and Xi = {ω0

i , ω
1
i , . . . , ω

l
i}. Each

Xi encodes l candidates from which only one should be kept,
see figure 1(b). The aim of this organization is, instead of
proposing a single object ωi to detect the real object oj , we

2To speed up the process, we consider a inhomogeneous birth rate to favor
birth of several objects in the neighborhood of well chosen positions



propose many objects at a similar location represented by Xi

at each iteration and then select the most relevant object in
Xi during the selection phase. The generation of Γ elements
take advantage of the birth map to speed up the process, while
staying uniform over the mark space M .

Now raises the question of how to select the best candidate
inside each Xi. If all the Xi were independent, then the se-
lection of every ωi

j ∈ Xi could simply be calculated based on
the data term ud(ωi

j). However, if we consider a dense con-
figuration of objects during the birth step, the independence
hypothesis is broken.

In this paper we propose an optimal selection of ω′ from
an almost very dense configuration Γ. The idea is to gen-
erate Γ such that the interaction graph between variables ωi

remains a tree (with no loop). The global optimum ω′ can be
inferred rapidly on this tree using belief propagation [7].

Belief propagation is a particular case of dynamic pro-
gramming, more precisely it is a variation of Dynamic Time
Warping suitable to trees instead of chains, often formulated
with message passing. The core of the algorithm relies on the
tree structure of the interactions between variables, i.e. if ω1

is a leaf and thus interacts with only one variable, ω2:

inf
ω1,ω2,...,ωn

" X
i

ud(ωi) +
X
i∼j

up(ωi, ωj)

#
=

= inf
ω2,ω3,...,ωn

[ ∑
i>1

vd(ωi) +
∑

i∼j>1

up(ωi, ωj)

]

where vd = ud except for vd(ω2) = ud(ω2)+infω1{ud(ω1)+
up(ω1, ω2)}. This optimization over ω1 given ω2 is easy to
perform and rewrites the problem into a similar one but with
one fewer variable. Repeating this trick n times solves the
problem, with linear complexity in the number of variables.
Once a configuration Γ is generated, we apply the belief prop-
agation algorithm to select the best candidate inside each Xi,
which gives the global optimum ω′ from this configuration Γ.
While generating Γ, the algorithm keeps track of the created
neighborhood to verify that it always represents a tree.

The generation and selection phase progress are presented
in figure 1. In figure 1(a), we present the current configura-
tion ω[n] = {a, b, c}. In figure 1(b), the algorithm gener-
ates a dense configuration Γ = {X1, X2, X3, X4}, and from
each Xi candidates, only one is kept as in figure 1(c), ω′ =
{d, e, f, g}. In figure 1(d), we present ω = ω[n]∪ω′ on which
the graph is constructed for the Cut step.

3.2. Cut Step

Given the output of the previous iteration ω[n] and the newly
proposed ω′, we want to find the optimal configuration from
ω[n] ∪ ω′ that minimizes the total energy. We briefly explain
this cut step based on graph cuts, for details please refer to [5].

In contrast to most graph cut problems where the graph
nodes represent pixels, the nodes of our graph represent ob-

(a) (b)

(c) (d)

Fig. 1: (a) Current configuration ω[n] in green. (b) Proposed
dense configuration Γ. (c) Selected ω[n] from the candidates
of Γ. (d) The configuration ω = ω[n] ∪ω′ on which the graph
is constructed for the Cut step.

jects. Each node is connected to the terminals S and T , and
the connecting edges are referred to as t-links. Interacting
nodes, are connected with edges which are referred to as n-
links. To the t-links and the n-links weights are assigned the
data term and the prior term respectively.

A binary graph cut is applied to this graph, which assigns
a label ’0’ or ’1’ to each node (object). The key for using
this labeling to keep the good objects and remove the non-
fitting ones is that the labeling is differently interpreted for
the current configuration ω[n] and the newly proposed one ω′.
Label ’1’ for ωi ∈ ω[n] means ’keep’ this object, label ’0’
means ’kill’ (remove) it while label ’1’ for ωi ∈ ω′ means
’kill’ this object and label ’0’ means to ’keep’ this object.

For the t-links, for ωi ∈ ω[n] the weight to the source is
the data term ud(ωi) and 1 − ud(ωi) to the sink, while it is
the opposite for ωi ∈ ω′, with 1 − ud(ωi) to the source and
ud(ωi) to the sink. For the n-links, all costs are zeros except
for the labeling (0, 1) which corresponds to the case of two
overlapping objects, in which case the cost is infinity.

4. RESULTS

In this section we present some results of flamingo detec-
tion from aerial images comparing our new algorithm to the
standard MBC algorithm [5]. First we present the detection
result on a sample from a colony image. In figure 2(a) we
present the sample, and in 2.(b) the detection result, showing
the quality of the detection. Secondly, we present the energy
evolution during the optimization of both the basic MBC and
the newly proposed version, and we also present object de-
tection rates. We compared both algorithms on three samples
of around 260, 1900, and 3250 flamingos. Figure 3.(a,c,e)



(a) (b)

Fig. 2: (a) A sample from a flamingo colony. (b) The detec-
tion result, each flamingo is surrounded by a pink ellipse.

shows the energy evolution with respect to time of both al-
gorithms for the first, second and third samples respectively.
We conclude that for a very small number of objects, there
is no advantage using the modified version of the algorithm,
while it becomes very interesting when the number of objects
increases. The conclusion is similar for the rate of object de-
tection, as presented in figure 3(b,d,f), our algorithm has a
higher detection rate for relatively large number of objects.

5. CONCLUSION

So far, optimizing the MPP was only possible within a simu-
lated annealing scheme, until, recently, an efficient optimiza-
tion algorithm for MPP based on graph cut was proposed [5].
In this paper we presented a new version of this optimization
algorithm, using belief propagation to optimize the proposed
configuration inside each iteration to obtain a relevant pro-
posed configuration. The results show that our algorithm is
substantially faster than the basic MBC algorithm. Flamingo
colonies consist in general of more than one thousand objects,
which makes our algorithm much more interesting for a real
application. We have demonstrated how our algorithm in the
MPP framework can be used to efficiently solve the flamingo
counting as one of many possible applications.
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