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Abstract: A functional for unsupervised texture 

segmentation is investigated in this paper. An auto-

normal model based on Markov Random Fields is 

employed here to represent textures. The functional 

investigated here is optimized with respect to the 

auto-normal model parameters and the evolving 

contour to simultaneously estimate auto-normal 

model parameters and find the evolving contour. 

Experimental results applied on the textures of the 

Brodatz album demonstrate the higher speed of 

convergence of this algorithm in comparison with a 

traditional stochastic algorithm in the literature. 
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I. Introduction 

Unsupervised texture segmentation is a challenging 

and demanding task in computer vision and image 

processing. This is due to the fact that image 

segmentation and the estimation of model parameters 

must be performed simultaneously. One of the most 

popular models employed in texture segmentation is 

Markov random field (MRF) models. There are 

numerous unsupervised texture segmentation 

algorithms based on Markov random fields in the 

literature (e.g. see [1] [2] [3] [4] [5] [6] [7]). Gaussian 

Markov Random Field (GMRF) model is used in [1] 

for unsupervised texture segmentation. A multi-

resolution scheme is also employed in the literature 

(e.g. see [2] [4] [3]) to improve the quality of the 

texture segmentation. The most likely number of 

classes of textures in an image is estimated in [5] 

according to maximum a posteriori (MAP) criterion. 

Double Markov Random Fields (DMRF) is employed 

in [6] in a Bayesian framework for unsupervised 

segmentation of textures. The work of Kato et al. [7] 

is an example of methods combining color and 

texture features in a Bayesian framework via 

simulated annealing [8].  

In this paper, we focus on GMRF models used for the 

unsupervised segmentation of texture images. Snake 

algorithm via gradient descent method is exploited 

here to perform segmentation. Maximum likelihood 

(ML) is also employed to estimate the GMRF model 

parameters. The rest of the paper is structured as 

follows. The theory is discussed in section II. Section 

III presents experimental results. Conclusions are 

drawn in section IV.  

II. Texture Model and Segmentation 
A functional based on Mumford-Shah (M-S) model 

[9] is proposed here to minimize the contour length 

and to maximize likelihood functions inside and 

outside the evolving contour. We assume that the 

lattice inside and outside the contour are Markov 

random fields [10]. The evolving contour is 

represented implicitly by shapes as described in [11]. 

A GMRF model also known as auto-normal model 

(for further details see e.g. [1]) is considered for 

textures here. The model parameters are therefore 

estimated by a maximum likelihood scheme (ML) in 

each iteration. The functional is also minimized with 

respect to the evolving contour to produce a flow to 

iteratively derive the contour to the desirable 

solution. Let us initially consider a site i in the input 

texture image. We assume that the image is 

Markovian, i.e. for a neighborhood 

{ }),( ii

i

i yxR −Ω=⊂Ν of this site (where Ω is image 

domain i.e. the set of all sites in the image), the 

conditional probability density P only depends on the 

pixels in the neighborhood
iΝ , i.e.: 

( ( , )) ( ( , ) ( , ))
i iN i i i iP g x y P g x y g x yΝ Ν=                 (1) 

A second order neighboring system is assumed for 

iΝ in this paper. Pair-wise cliques are also assumed 

in this neighboring system. For such pair-wise 

cliques, the conditional probability density is given 

by equation (2):  
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where σ  is the conditional standard variation, 

( )
jα=α  for 

ij Ν∈ and λ  is the mean value of pixels. 

In equation (2), the j
th

 neighboring pixel location for 

the i
th

 pixel is represented by ( ),j jx y . We therefore 

propose to find the minimum of the following 

functional for texture segmentation: 

( ) {, , , , , , ln ( ( , ), , , ) ( , )NE P g x y x yλ σ ν ρ χ µ χ λ σ χ

Ω

= ∇ −∫∫α β α

 

( )}ln ( ( , ), , , ) 1 ( , )NP g x y x y dxdyν ρ χ− −β                     (3) 

where { }: 0,1χ Ω → and µ are the shape characteristic 

function representing the evolving contour and a 

constant respectively. The first term in functional (3) 

is responsible for contour length minimization [9,12]. 

The second and third terms, i.e. 

ln ( ( , ), , , )NP g x y λ σ− α  and ln ( ( , ), , , )NP g x y ν ρ− β  

are minimized with respect to parameters 

,  ,   , , ,  and λ ν σ ρα β . This indicates that we are 

looking for a probability distribution function giving 

the observed data the greatest probability (maximum 

likelihood). In functional (3), an image is assumed to 

consist of two textures. Functional (3) can also be 

generalized for images containing more than two 

textures by employing a multi-phase shape scheme 

similar to the multi-phase level set framework 

proposed in [12]. All model parameters are assumed 

constant over all sites inside and outside of the 

evolving contour. In order to estimate the model 

parameters, functional (3) is minimized with respect 

to the model parameters , , , , ,  and λ ν σ ρα β  leading to a 

maximum likelihood strategy. This is achieved by 

assuming that the first derivative of functional (3) 

with respect to the model parameters vanishes. This 

leads to a system of equations whose solution is the 

desirable model parameters in each iteration, i.e. if 

the input image is considered as an NM × discrete 

grid, then the system can be written as: 

1 ( , ) ( , )

i i

j i i j j j

j N i j

MN g x y g x yα λ α
∈ ∈Ν

   
   − = −
   
   
∑ ∑ ∑          

                                                                                 (4) 
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We notice that equations (4) to (6) are derived for the 

model parameters of the texture inside the contour. 

Similar equations can be derived for the model 

parameters of the texture outside the contour. We 

assume that model parameters are constant over the 

region inside or outside of the contour. But the model 

parameters inside the contour are different from 

outside ones. It is important to note that equations 

(4)-(6) are not linear. To find the solution of 

equations (4)-(6), we employ an iterative method by 

initially calculating the mean of inside and outside of 

the evolving contour to find an initial estimate for λ . 

Then equations (5) are linearly solved for 
jα s 

(
jj Ν= ,...,2,1 ). Equation (4) is then solved to find 

better estimates for λ . Equations (5) are again solved 

to update 
jα s according to the latest value of λ . This 

iterative method ends when the distance between the 

calculated parameter values in two consecutive 

iterations becomes less than a certain threshold. 

Finally the conditional variance is calculated by using 

equation (6). To calculate the evolving contour 

iteratively, functional (3) is minimized with respect 

to χ by arriving at Euler-Lagrange equation: 

( )
( )

( , ), , ,
ln

( , ), , ,

N

N

P g x y λ

t P g x y ν

σχ χ
µ

χ ρ
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                         (7) 
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where t is the virtual time along which the contour 

evolves to the desirable solution. 

In each iteration, equations (4) to (6) are employed to 

update the model parameters and equation (7) is 

exploited to calculate the evolving contour for the 

corresponding iteration according to the model 

parameters updated in (4) to (6). For regularization, a 

Dirac filter is applied on shape characteristic function 

in each iteration [11], i.e. the following C∞  

regularizing function is convolved with the shape 

characteristic function in every iteration (see [11] for 

more details): 

( )2 2 2
( , )G x y

x y
ε

ε

π ε
=

+ +
            (8) 

where ε is the regularizing parameter. A semi-

implicit finite difference scheme [12] is also 

employed to discretize equation (7). 
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III. Experimental Results 

Let us consider the texture image consisting of two 

textures from Brodatz album as shown in figure (1). 

The unsupervised texture segmentation method 

proposed here is applied to this image. Figures (1-a) 

to (1-f) depict a few iterations of this algorithm. In 

this experiment, the time increment (in contour 

evolution) 1t∆ = , 08.0=µ  and a 10 x 10 Dirac filter 

with a regularizing parameter 4=ε  for regularization 

is chosen. We also observe that the final result of 

segmentation does not depend on the initial values of 

the auto-normal model parameters. However the final 

segmentation result depends on the initial contour. 

The algorithm may fall into local minima for some 

initial contours. We compare our algorithm with a 

multi-resolution Gaussian Markov Random Field 

(GMRF) with a second order neighborhood (auto-

normal model)[2][3][4]. A simulated annealing 

algorithm is employed to maximize a posterior 

(MAP) probability [8]. In such an algorithm, the 

likelihood function is a probability function based on 

the auto-normal model (Gaussian Markov random 

field). The prior probability is a Gibbs distribution 

function modeling the segmented image (labels) 

assumed to be a hidden Markov random field. In such 

a framework, labels are considered to be an Ising 

model. The posterior probability is then calculated in 

a Bayesian framework. The simulated annealing 

technique is therefore used to maximize this posterior 

probability. The segmentation target of the texture 

image of figure (1) is depicted in figure (2-a). The 

segmentation result obtained by the multi-resolution 

GMRF algorithm using a simulated annealing 

optimization method in which virtual temperature 

decreases logarithmically [8], is shown in figure (2-

b). The result shown in figure (2-b) is obtained after 

18000 iterations (10000 iterations with half 

resolution and 8000 iterations with full resolution). In 

a PC with a 2.00 GHz microprocessor, each iteration 

for the simulated annealing with half and full 

resolution takes 3.9 and 16.2 seconds respectively. 

The total time elapsed by the CPU is therefore 

168600 seconds. As shown in figure (2-b), there are 

some pixels which are incorrectly segmented in 

simulated annealing algorithm. This is due to the fact 

that the algorithm is stopped before the temperature 

drops to absolute zero. We notice that the 

temperature approaches zero logarithmically, it 

would therefore take several days for the simulated 

annealing to get to zero temperature. This is the main 

disadvantage of the simulated annealing algorithm. 

The segmentation result of the snake algorithm 

proposed in this paper is illustrated in figure (2-c) in 

a binary format. It takes 49 iterations (each iteration 

11.2 seconds) for the snake-based algorithm proposed 

here to segment the textured image. The total time 

spent by CPU to implement the snake-based 

algorithm is therefore 548.8 seconds. Only single 

resolution scheme (full resolution) is used to 

implement the minimization of functional (3). In this 

paper, the segmentation error between the 

segmentation target and the binary segmented image 

obtained by both algorithms is calculated by the 

following term: 

 
a                         b                         c 

 
d                       e                        f 

Figure 1: Contour evolutions of the algorithm 

proposed here applied on a 200 x 200 texture image 

from Brodatz album a) Initial contour, b) 11
th
 

iteration, c) 21
st 

iteration d) 31
st
 iteration e) 41

st
 

iteration f) 49
th

 iteration 

∑∑ −=
x y

yxSyxTError
2

),(),(            (9) 

where T(x,y) and S(x,y) are the segmentation target 

and the binary segmented image obtained by the 

algorithms investigated in this paper respectively. 

The average error terms calculated by equation (9) 

and normalized by the total number of pixels in the 

image for segmented images over a range of Brodatz 

texture images are tabulated in table 1. 

 
a                   b                       c 

Figure (2): Segmentation results in binary format, a) 

segmentation target b) auto-normal model using 

multi-resolution simulated annealing c) auto-normal 

model using snake 

Figure (3) shows the contour evolutions of the 

snaked-based unsupervised texture segmentation 

algorithm proposed here to segment a 400 x 400 

textured image consisting of two other textures from 

Brodatz album. The algorithm converges to the 

solution after 87 iterations. The superiority of the 

snake-based algorithm proposed here is demonstrated 
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by the higher speed of segmentation as explained 

earlier. 

Table 1: A quantitative comparison in the 

normalized segmentation error over a range of texture 

images for the simulated annealing and  snake-based 

algorithm 

 Simulated 

Annealing 

Snake 

Normalized 

Average Error 

(%) 

1.88% 1.51% 

IV. Conclusion 

A snake-based Gaussian Markov Random Field 

(auto-normal) model is proposed in this paper for 

unsupervised texture segmentation. The method 

proposed here performs the texture segmentation 

much faster than the traditional stochastic auto-

normal model implemented by a multi resolution 

scheme based on simulated annealing. Only a single 

resolution scheme is required for the snake-based 

segmentation method to converge.  

 
a                            b                            c 

 
d                              e                          f 

Figure (3): Contour evolutions of the unsupervised 

texture segmentation algorithm proposed here to 

segment a 400 x 400 textured image a) first iteration, 

b) 11
th 

iteration, c) 31
st 

iteration, d) 51
st
 iteration, e) 

71
st 

iteration, f) 87
st
 iteration.  
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