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ABSTRACT

This paper presents 3-D brain tissue classification schemes using
three recent promising energy minimization methods for Markov
random fields: graph cuts, loopy belief propagation and tree-
reweighted message passing. The classification is performed us-
ing the well known finite Gaussian mixture Markov Random Field
model. Results from the above methods are compared with widely
used iterative conditional modes algorithm. The evaluation is per-
formed on a dataset containing simulated T1-weighted MR brain
volumes with varying noise and intensity non-uniformities. The
comparisons are performed in terms of energies as well as based on
ground truth segmentations, using various quantitative metrics.

Index Terms— Energy minimization, Markov random fields,
medical image segmentation, brain tissue classification.

1. INTRODUCTION

Recent developments in energy minimization methods for Markov
random fields (MRF) have resulted in faster and efficient global (or
strong local) minimization algorithms [1]. Graph cuts (GC) [2, 3, 4],
loopy belief propagation (LBP) [5, 6] and tree reweighted message
passing (TRW) [7, 8] are among such most notable algorithms. The
applications of these algorithms are spread over a wide variety of
early vision problems. Szeliski et al. [1] compared these algorithms
in the domains of stereo matching, image stitching, 2-D binary im-
age segmentation, denoising and inpainting, for different types of
smoothness-based priors. They demonstrated the potential of these
global minimization algorithms over the older yet widely used iter-
ated conditional modes (ICM) [9] algorithm. While many of these
global minimization algorithms have received the much deserved at-
tention in the domains like stereo matching, they are less explored
in the context of medical imaging. For instance, to the best of our
knowledge, TRW algorithm, which is found to give consistently
strong results in various early vision problems [1], has never been
evaluated in the context of medical image segmentation.

The main contribution of this paper is the convergence study
of these optimization methods for tissue classification of Magnetic
Resonance (MR) brain imaging. Brain tissue classification plays an
important role in many applications. For instance, this is essential
for the quantitative study and analysis of several brain disorders like
alzheimer’s disease, as well as in understanding the development
process of the brain. Further, brain tissue classification is also used
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as a preprocessing step for many applications like voxel-based mor-
phometry. Among numerous approaches, MRF models are widely
used for performing automated 3D brain tissue classification [10].
This paper evaluates the recent MRF energy minimization meth-
ods on the widely used finite Gaussian mixture MRF (FGMMRF)
model [11].

We note that except in very few works [12], none of the global
(or strong local) optimization methods are evaluated for brain tis-
sue classification. [12] compared brain tissue classification results
obtained from ICM with graph cuts. However, in their comparison,
while graph cuts-based method was using tissue-priors information,
this information is not used with ICM-based method; further, the 3-
D segmentation in [12] is done slice by slice on a 2-D grid, but not
on the original 3-D grid. Thus, no comparisons of MRF energy min-
imization methods for brain tissue classification are available in the
literature that are performed under identical parameters.

The following algorithms are evaluated in this paper: (i) two
most popular versions of GC, known as expansion-move and swap-
move algorithms [2, 3, 4], (ii) an LBP implementation derived by
Kolmogorov from TRW-S [8], called BP-S algorithm, (iii) an im-
proved version of the original TRW algorithm [7], called the sequen-
tial TRW (TRW-S) [8], and (iv) ICM algorithm [9].

Regarding the implementation of these algorithms, thanks to the
MRF library [1] 1, it has served as a basis for our current imple-
mentation. The above mentioned MRF library can, however, handle
neighborhood priors only on a 2-D grid which is not suffice for 3-D
medical imaging applications. We have now enhanced it to handle
3-D grid and also integrated it with ITK 2, which is a widely used
open-source tool in medical imaging.

The rest of the paper is organized as follows. In Section 2, we
briefly present the FGMMRF model and the optimization methods.
Evaluation results are presented in Section 3. Discussion and con-
clusions are presented in Section 4.

2. METHODOLOGY

2.1. Energy Model

Let ν represent the set of all voxels in a given image, and Xp be the
label (tissue-class) assigned to the pth voxel. Let N be the number
of voxels in the set ν. LetX be the set containing the labels assigned
to ν, i.e., X = {X1, · · · , XN}. Then, the brain tissue classification
is often formulated as an energy minimization problem of the form:

E (X) =
∑
∀p∈ ν

ψp (Xp) +β
∑
∀p∈ ν

∑
∀q∈ℵp

ψpq (Xp, Xq) ,

1http://vision.middlebury.edu/MRF/
2http://itk.org/
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where the first term is a data term (unary function) representing the
intensity modeling of the tissue classes, and the second term is a
smoothness term (pairwise function) representing the neighborhood-
prior modeling. β is a weighting parameter between the data term
and smoothness term.

a) Data term: Let Ip be the observed intensity of the pth voxel,
and I = {I1, · · · , IN}. Let L = {l1, · · · lD} be the set of labels
to be assigned. Let θi = {µi, σi} are mean and variance associated
with label li, and θ = {θ1, · · · , θD}. For the brain tissue classifi-
cation, intensities of the tissue classes are generally modeled with
Gaussian distribution [11]. Hence, the likelihood that a given label-
ing X and θ have produced I is given by:

P (I|X, θ) =
∏
∀p∈ ν

(
1√

2π σXp

exp

(
−
(
Ip − µXp

)
2

2σ2
Xp

))
.

By taking a negative logarithm of the above equation, the problem
of maximizing the likelihood can be transformed into an equivalent
energy minimization problem with the following unary function:

ψp(Xp) =
(Ip − µXp)2

2σ2
Xp

+ log(
√

2π σXp).

b) Smoothness term: The smoothness term for FGMMRF model
is given by the discontinuity preserving Pott’s model:

ψpq (Xp, Xq) =

{
0, if Xp = Xq;
1, otherwise.

Note that the above smoothness term does not penalize when neigh-
borhood voxels are assigned the same label. The finite Gaussian
mixture MRF (FGMMRF) model studied here [11] aims to clas-
sify the image voxels into one of the three brain tissue types:
cerebrospinal fluid (CSF), gray matter (GM), and white matter
(WM). The background (BKG) is represented by an additional la-
bel. Thus, D = 4 for this model, and the set of labels is given by
L = {BKG, CSF, GM, WM}.

2.2. Optimization Methods

We briefly mention here the general characteristics of the optimiza-
tion methods that we evaluate on the energy model described in the
preceding subsection. For a more detailed discussion, the readers are
referred to [1]. The classical ICM algorithm uses a greedy approach,
and converges faster than the rest of the algorithms evaluated in this
paper. However, ICM provides local minima, and thus it is very
sensitive to initialization of the labeling. Graph cuts, if applicable,
generally gives very accurate results. They are however applicable
to limited pairwise potentials. For example, for obtaining a guar-
anteed global optimum with graph cuts, the pairwise potential term
should be a metric in case of GC-Expansion and semimetric for GC-
Swap. On the other hand, LBP is applicable to any energy function,
but it does not always converge. Regarding TRW-S, it is noted in [1]
that it can be a good competitor to graph cuts in certain applications.
TRW-S is applicable to any energy function. However, TRW-S is
computationally slower than graph cuts, and convergence of energy
is not guaranteed.

3. RESULTS

The evaluation is performed on the simulated brain volumes from the
Brain Web database of the McConnell Brain Imaging Centre [13].

We use a dataset of 12 brain volumes that contain images with vary-
ing noise levels (0%, 1%, 3%, 5%, 7% and 9%), and two levels of
intensity non-uniformities (INU 20% and 40%).

Among different parameters to be set, the most sensitive param-
eter in obtaining accurate tissue classification is the mean intensity
of each tissue class (µl). Hence, we have iteratively updated the
mean intensity values of each label using the expectation maximiza-
tion approach in [10], by computing the a posteriori probabilities of
the labels, and is given by:

µ(k)
l

=

∑
∀p∈ ν

(Ip)P
(k)(Xp = l| Ip, θ(k−1)

l )∑
∀p∈ ν

P (k)(Xp = l| Ip, θ(k−1)
l )

.

The σ value for each tissue class is fixed to the typical value 5 [10].
β is fixed empirically to 1.0 similar to [1, 10], based on the visual
inspection of the segmentation results.

In order to compare the energy convergence results from all the
methods under identical conditions, final µ values obtained by itera-
tively updating them in one of the methods (GC-Expansion) are used
for the remaining methods. For instance, final µ values with GC-
Expansion, obtained for CSF, GM and WM, for the image with 5%
noise and 20% INU are, 46.3, 92.9 and 126.4 respectively, and the
same values are used with other MRF optimization methods. How-
ever, we noticed that, even allowing each method to independently
update the µ values has resulted in similar mean values with small
variations in their first decimal.

All the experiments are run on the same machine (2.26 GHz
Intel Xeon Processor, 12 GB RAM). The results from all 12 brain
volumes have shown consistently similar behavior. Because of space
limitations, we show here energy results for just one image with 5%
noise and 20% INU, and visual results for one of the axial slices
extracted from the above brain volume. However, the quantitative
results presented here are computed over the entire dataset of 12
volumes.

TRW-S has the ability to compute a lower bound on the en-
ergy of the optimal solution. Similar to [1], we take advantage of
this lower bound; instead of comparing the absolute energies, we
normalize the energies by dividing them with the best lower bound
computed by TRW-S, and then compare the energies.

Fig. 1 shows the energy convergence results for the brain vol-
ume with 5% noise and 20% INU. The energy differences among
these methods, including ICM, are found to be marginal. In terms
of time taken for convergence, ICM is obviously faster compared to
global optimization methods since, its convergence is based on lo-
cal optimization criteria. Among the global optimization methods,
expansion-move version of graph cuts is the fastest one. The energy
convergence results for the remaining brain volumes in the dataset
are also similar to the above mentioned results.

Fig. 2 shows an axial slice extracted from the image brain vol-
ume with 5% noise and 20% INU, and its ground truth segmentation.
Fig. 3 shows automated tissue classification results obtained from all
methods. Quantitative evaluation is performed using the commonly
used metrics: (i) sensitivity (a measure of true-positive fraction), (ii)
specificity (a measure of true-negative fraction), (iii) dice similarity
metric (DSM) (a measure of overlap between ground truth and auto-
mated segmentation), and (iv) % of error in volume; the results are
shown in Table 1 and Table 2. The differences among the methods
for all these metrics are found to be marginal. The results from ICM
in terms of these metrics are, surprisingly, quite close to the best
ones.
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Fig. 1: Comparison of energy results for the MRF minimization methods. These are the results obtained from FGMMRF model, for the
simulated brain volume with 5% noise and 20% INU. The second and third plots are the zoomed versions of the first plot.

(a) ICM (b) BP-S (c) GC-Swap (d) GC-Expansion (e) TRW-S

Fig. 3: Qualitative comparison of segmentation results in one of the slices in the axial direction, extracted from the brain volume with 5%
noise and 20% INU. Results from all the methods are very close, and are quite similar to the ground truth segmentation shown in Fig. 2b.

Table 1: Mean and standard deviations of sensitivity and specificity of CSF, GM and WM tissues, obtained from different MRF optimization
methods. These values are computed over a dataset of 12 brain volumes with varying noise (0-9%) and INU (0-20%).

Method Sensitivity(%) Specificity(%)
CSF GM WM CSF GM WM

ICM 93.42 ± 4.41 92.23 ± 3.41 94.55 ± 2.81 99.28 ± 0.85 99.21 ± 0.47 99.21 ± 0.39
BP-S 93.43 ± 4.39 92.21 ± 3.39 94.62 ± 2.77 99.26 ± 0.88 99.22 ± 0.46 99.20 ± 0.38

GC-Swap 93.23±4.45 91.74 ± 3.59 95.14 ± 2.46 99.16 ± 1.11 99.25 ± 0.45 99.10 ± 0.42
GC-Exp 93.26 ± 4.43 92.01 ± 3.46 94.84 ± 2.61 99.27 ± 0.89 99.23 ± 0.45 99.16 ± 0.40
TRW-S 93.43 ± 4.39 92.21 ± 3.39 94.62 ± 2.76 99.26 ± 0.88 99.22 ± 0.46 99.20 ± 0.38

Table 2: Mean and standard deviations of dice similarity metric and % error in volume of CSF, GM and WM tissues, obtained from different
MRF optimization methods. These values are computed over a dataset of 12 brain volumes with varying noise (0-9%) and INU (0-20%).

Method Dice Similarity Metric(%) %Error in Volume
CSF GM WM CSF GM WM

ICM 90.89 ± 8.30 93.32 ± 3.34 93.60 ± 3.07 6.49 ± 11.43 -2.35 ± 0.75 2.05 ± 1.67
BP-S 90.79 ± 8.48 93.33 ± 3.32 93.62 ± 3.04 6.81 ± 12.05 -2.42 ± 0.74 2.16 ± 1.64

GC-Swap 90.11 ± 9.75 93.17 ± 3.39 93.48 ± 3.04 8.46 ± 15.98 -3.09 ± 0.86 3.60 ± 2.00
GC-Exp 90.81 ± 8.48 93.27 ± 3.33 93.55 ± 3.01 6.39 ± 12.16 -2.70 ± 0.82 2.77 ± 1.76
TRW-S 90.79 ± 8.48 93.33 ± 3.32 93.62 ± 3.04 6.81 ± 12.06 -2.42 ± 0.74 2.17 ± 1.64
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(a) (b)

Fig. 2: (a) One of the axial slices extracted from the brain volume
with 5% noise and 20% INU. (b) Ground truth segmentation of tis-
sues for the same slice; CSF, GM and WM tissue classes are repre-
sented with labels of red, green and blue colors respectively.

4. CONCLUSIONS

In this paper, we have presented tissue classification of MR brain
volumes with different MRF optimization algorithms, and com-
pared them using identical parameters. The evaluated algorithms
are: expansion-move and swap-move versions of the graph cuts
method, loopy belief propagation, sequential tree reweighted mes-
sage passing, and the older iterated conditional modes algorithm.
The evaluation is performed on the widely used FGMMRF model,
using a dataset of 12 brain volumes with varying noise and INU.

In order to draw definite conclusions about the accuracy of the
widely used FGMMRF model (or any other model in general), it is
essential to make sure that the solution has converged to a global
optimum. Otherwise, it will be ambiguous whether the resulting
errors are due to the model itself, or, whether the errors are related to
the convergence of optimization method used for solving the model.
The current study is important in this perspective also.

It is well known that since ICM converges to a local optimum,
its results depend very much on the initialization of the labels. In
this paper, for ICM, each voxel is initialized with that tissue-class la-
bel with whose µ value the voxel’s intensity difference is minimum.
From the results, we notice that although ICM is a local optimization
method, the above mentioned initialization resulted in an accurate
classification. However, if a dataset to be segmented is quite differ-
ent from the above tested volumes from Brainweb, it may be safe to
use GC-Expansion rather than ICM so that convergence to a global
minimum is guaranteed. Note that among the global optimization
methods, GC-Expansion converged quickly. In the future work, we
want to study in more detail, the effects of different initializations
on the convergence of ICM. We would like to extend this evaluation
to real brain volumes. Further, we would like to perform similar in-
vestigation on other tissue classification models like partial volume
models [14, 10]. It would be also interesting to evaluate other fast
optimization methods like [15].
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