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ABSTRACT

In this contribution a novel method to compute dense point-to-
point correspondences between 3D faces is presented. The faces are
aligned in 3D space with a Generalized Procrustes Analysis and sub-
sequently mapped into 2D space. To compute a correspondence flow
between two faces an energy function is minimized which is based
on the following assumptions: smoothness of the flow, mapping of
landmarks on their counterparts, and texture and depth consistency.
Based on these correspondences, the 3D faces are resampled, so
that each face is represented by the same amount of 3D points and
for any point there is a corresponding point in all other faces. The
accuracy of the point-to-point correspondences is demonstrated on
the basis of two applications, namely facial texture mapping and the
construction of 3D Morphable Models.

Index Terms— 3D surface registration, correspondence estima-
tion, face image processing, face synthesis

1. INTRODUCTION

The 3D Morphable Model (3DMM), presented by Blanz and Vetter
[1], is a powerful tool applicable for many computer vision tasks,
such as face recognition [1], expression transfer between individuals
[2], and face tracking [3]. The crucial step in constructing a 3DMM
is to find dense point-to-point correspondences between 3D faces of
a database, so that Principal Component Analysis (PCA) can be ap-
plied. The accuracy of the correspondences determines the quality
of the 3D face model and the performance of the whole application.
Establishing point-to-point correspondences between faces is par-
ticularly challenging if the faces have different facial expressions.
Thus, in [2] spots had to be painted on the skin of the faces in the
expression database. Most recent 3DMMs [4, 5] do not model any
facial expressions.

Methods to determine dense point-to-point correspondences
can be classified into two categories. The first approach is to es-
timate correspondences based on texture and depth information.
In the original 3DMM paper, Blanz and Vetter applied a modified
Lucas-Kanade optical flow to determine correspondences. Similar
approaches have been presented in [6, 7, 8]. Amberg et al. [9]
proposed a nonrigid Iterative Closest Point Algorithm where dense
correspondences are computed based on only depth information.
Correspondence estimation based on texture and depth has several
drawbacks. The estimation might be corrupted if two individuals
have different skin color, facial hair or different facial expressions.
Note that in the works [1, 4, 9] the faces have no facial hair and
neutral facial expression. However, employing a database with a
variety of expressions, different amounts of facial hair, or different
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skin color is desirable, since it makes the model more powerful. We
will show in this work that a multi-expression 3DMM built with
correspondences based on only texture and depth is not satisfying.
Most recently published 3D face databases come already with hand-
labeled landmarks (for example [10] or [11]). This information is
completely ignored by correspondences based on only texture and
depth.

Thus, a second approach is to base the correspondence estima-
tion only on landmarks. The correspondences for all other points
are subsequently interpolated by, for example, thin-plate spline func-
tions, as proposed in [5], radial basis functions, as in [12], or triangle
quadrisection, as in [13]. However, the landmarks are a quite sparse
set of points compared to the overall number of points of a 3D scan.
It is obvious that in between landmarks correspondences might not
be interpolated correctly.

In this work we propose a novel method that integrates both tex-
ture/depth consistency and information from landmarks into one en-
ergy function. Based on the landmarks of each face we perform
a Generalized Procrustes Analysis so that all faces are aligned in
3D. Subsequently, the 3D surfaces are mapped into the 2D plane
and missing pixels are interpolated (Section 2). One reference face
is selected and correspondences in 2D are estimated based on tex-
ture/depth consistency, landmark consistency, and smoothness (Sec-
tion 3). The 3D faces are resampled, so that all faces are repre-
sented by the same amount of points and corresponding points ap-
pear at the same position in the point list (Section 4). In Section 5
we demonstrate the accuracy of our point-to-point correspondences
on the bases of two applications, namely facial texture transfer and
the construction of a 3DMM. Section 6 concludes the paper.

2. ALIGNMENT AND MAPPING INTO 2D

The output of a 3D scanner is usually a list of 3D points. In addition
to that, certain landmarks on the 3D facial surface are given.

Generalized Procrustes Analysis. First, all faces need to be aligned
in 3D. For this purpose the Generalized Procrustes Analysis based on
the 3D landmarks is applied to all faces. The output of the General-
ized Procrustes Analysis is a translation, rotation, and scaling factor
per face. For each face, we apply those three transformations to all
points and also to the 3D landmarks. For a detailed description of
the Generalized Procrustes Analysis refer to [14].

Mapping 3D Surfaces Into 2D. After the faces have been aligned,
the 3D points are mapped into the 2D plane. We use parallel pro-
jection, i.e., the x- and y-coordinates of a 3D point (if necessary
scaled) are directly employed to determine its position in the 2D im-
age. The z- and y-coordinates are usually not whole numbers and the
3D points are not equidistant from each other, which causes holes in
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the image. Barycentric interpolation is used to assign a well-defined
value to each pixel. Based on the 2D coordinates the points are De-
launay triangulated. Let @1, 2,3 be the 2D coordinates of the
three vertices of a triangle and « = (x, )" a pixel position (whole
numbers) inside this triangle. The barycentric coordinates of « are:

bi(x) = A(x, @2, x3)/A(x1, T2, T3),
bQ(m) = A(m7w37m1)/A(m17w25m3)7 (1)
bs(x) = A(z, 1, x2)/A(x1, T2, 3),

where A(x1, 2, x3) denotes the area of the triangle spanned by @1,
2, and 3. For example, the red component of pixel z is

R(z) =Y bi(x) - R(ax). )

k=1

Green, blue, and depth channels are computed alike. The result is
an image where each pixel has an explicit red, green, blue and depth
value. Any image resolution can be chosen by the user without caus-
ing holes in the image. Note that we also tried cylindrical projec-
tion. However, the results with parallel projection were better than
with cylindrical projection for the two databases employed in the
results in Section 5. A reason for this is that the longitudinal axis
of the cylindrical coordinate system has to be determined automati-
cally (e.g. by the center of mass) and may vary considerably between
faces. Furthermore, faces are usually quite flat.

Pixels with assigned values are foreground pixels and we store
these pixel positions in form of a foreground mask for the correspon-
dence estimation.

3. CORRESPONDENCE ESTIMATION

One face from the database is chosen as reference face. For
each foreground pixel of the reference face image a correspond-
ing subpixel position in all other face images, here called new
faces, is searched. The correspondence is encoded by a flow field
u = (u,v)T, where u and v are the shifts from a foreground pixel
in the reference face to the corresponding subpixel position in a
new face in z-direction and y-direction, respectively. The corre-
spondence estimation is based on three assumptions: smoothness,
landmark consistency, and texture/depth consistency.

Smoothness. The first requirement for the correspondence estima-
tion is smoothness. The facial skin is a flexible but connected surface
and thus neighboring pixels should have similar w values. Only for
the mouth and the eyes we need to break this constraint. This leads
to the first term of the energy function

Z Z (ufun)2+(van)2, 3)

UEQSmooth Un EN

ESmooth =

where A denotes a 3 X 3 neighborhood around the current pixel.
The binary mask smoon is depicted in Fig. 1 (a). It is set to 1 for
all pixels except for three thin lines between mouth and eye corners.
The lines are computed with the landmark information.

Landmark Consistency. In addition to smoothness, we require each
landmark to be matched to its counterpart in the other face:

Erv = Z (u— ULM)2 + (v — ULM)27 4)
uEQM

where ur,m and vrm are the required shifts to guarantee landmark
consistency. The binary mask g, is set to 1 only for the pixel
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Fig. 1. Binary masks that are employed for the three components of
the energy function. White means that the pixel is considered, black
that it is not considered. (a) Mask for the smoothness constraint.
The flow has to be smooth everywhere, even in the background, ex-
cept for a thin line at eyes and mouth. (b) Mask for the landmark
consistency term. Only landmark positions are considered. (c) Tex-
ture/depth consistency is required for all foreground pixels.

locations of the few landmarks, as depicted in Fig. 1 (b). Usually
landmarks have subpixel positions, so all four affected pixels around
the subpixel position are set to 1. In Fig. 2 (a) an exemplary flow
field based on only smoothness and landmark consistency is shown.
The flow field is evenly interpolated between the four landmarks and
it adapts smoothly if one of the landmarks receives a stronger force,
as shown in Fig. 2 (b).

This is beneficial for low textured regions, such as cheeks or
forehead. However, for other regions a pure interpolation of the flow
is not enough, especially if landmarks lie farther away from each
other. A very fine and accurate alignment also between landmarks is
desired.

Texture and Depth Consistency. Therefore, we introduce a third
term, the texture and depth consistency term. We require the inten-
sity, gradient, and depth of corresponding pixels to be equal:

Ic,ref(x,y) = Ic,new(zj‘i’u,y‘i’v)y (5)

where index c stands for the three channels (intensity, intensity gra-
dient, depth). The linearized version of this assumption leads to

Iequ+ I v+ Al =0, 6)

where Al; = Icnew — Icrer and I¢ 5, I are the derivatives in -

and y-direction. Hence, the third term of the energy function is

BErp= Y Y (Iau+ Leyv+ AL)% (7

uEQp ¢
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Fig. 2. The flow field is smoothly interpolated between the land-
marks. Landmarks must move into a certain direction due to the
landmark consistency term. (a) All four landmarks are affected by
the same shift. (b) One landmark receives a stronger force and the
flow field smoothly adapts.
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The binary mask €27,p, which is depicted in Fig. 1 (c) is only set
to 1 for the foreground pixel positions of the reference face image.
Numerical derivatives are computed with a Sobel filter.

Energy Function. The energy function, which will be minimized
with respect to wu, is then

E = Esmooth + aELy + BE1/p, (3)

where « and § are weighting factors for the landmark and tex-
ture/depth consistency term, respectively. In this work both weight-
ing factors are set to 1. Tests confirmed this choice. In order to
minimize F, it is derived with respect to v and v for all pixels and
subsequently all derivatives are set to zero:

0

saF =0 ©))
Equation (9) is a linear system of equations that can be reformulated
to Au = b, where A is a highly sparse 2K x 2K matrix, with K
being the number of pixels per image. The sparse linear system of
equations can be solved with iterative methods for sparse systems.
We choose the biconjugate gradient method due to its computational
efficiency.

Warping. To overcome convergence to local minima we apply the
smart warping approach Brox et al. proposed in [15]. A multiresolu-
tion image pyramid is created and the energy function is minimized
for the coarsest level. The solution is taken as starting point for the
next finer level and so on. Instead of creating the image pyramid
with the standard downsampling factor i = 0.5, a factor closer to
1, here © = 0.8 as suggested in [15], is employed. Note that be-
fore each downsampling step the image is smoothed with a Gaussian
kernel with standard deviation o = 1/u. Previous to the whole cor-
respondence estimation, the required number of pyramid levels L is
computed by L = [log (max({uwm}, {vim})) /log(1/pm)], where
{urm} and {vim} are the sets of the required shifts for all landmarks.

4. RESAMPLING

Subsequently, all faces are resampled. The process is illustrated in
Fig. 3. It is important not to lose precision when going from the
3D space into the image domain or using subpixel correspondences.
For each 3D point in the reference facial surface, the subpixel posi-
tion arr in the reference face image is determined and the flow w is
bilinearly interpolated at this position. The corresponding subpixel
position in the new face image is ®new = Tret + u. For the four
affected pixels, the corresponding 3D position and the color values
have been determined with barycentric interpolation in the 3D-2D
mapping step (Section 2).

For each new face the resampled 3D points with accompanying
color information are stacked into a face vector with N resampled

Subpixel position Subpixel position
xl‘l‘f X = xr(‘f + u

new

—
ol Optical flow [
with bilinear
interpolation [ |

Barycentric
interpolation for
affected pixels

i‘

New 3D
face

Reference

3D face Reference New face

face image image

Fig. 3. Illustration of the resampling step. For each 3D point of the
reference face a resampled point of the new face is computed. Bilin-
ear and barycentric interpolation are employed to not lose precision.
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points. All face vectors have the same size and points with the same
index correspond among faces.

5. RESULTS

In this section we show two applications for point-to-point corre-
spondences between 3D faces. The applications also demonstrate
the accuracy of our method.

5.1. Facial Texture Transfer

With the resampled 3D faces it is trivial to perform facial texture
transfer. Assume two vectors with resampled face vectors f, and
f 5. The facial texture of face 2 is transferred to the shape of face 1:

Sy Z1,N,T2,N, §2,N, bQ,N)T,

(10)
where x; ; is the z-coordinate of point j of face 7. Fig. 4 shows
a 3D facial shape with neutral expression. The textures of other
faces with strong expressions are mapped on the neutral shape as
explained above. It can be seen that the lips, the eyes, and nose
textures are mapped accurately on the right positions on the neutral
shape indicating proper point-to-point correspondence estimation of
our method. For the facial texture transfer, the Bosphorus Database
[10] (22 landmarks per face) has been employed.

for = (@11,y11, 211,721, - -

Texture

Shape

Texture on shape

Fig. 4. With dense point-to-point correspondences between faces the
texture of one face can be painted onto a shape of another face. Here
textures of faces with expressions are mapped on a neutral shape.

5.2. 3D Morphable Models

A more powerful application is the construction of 3D Morphable
Models [1]. Depending on the training set a multi-gender, multi-
ethnic, or multi-expression 3DMM can be built with accurate point-
to-point correspondences.

Construction. The mean face f of all resampled faces fm, 1 <
m < M is computed and subtracted from each face vector. Subse-
quently, the mean-subtracted face vectors are written column-wise
into a matrix and Principle Component Analysis (PCA) is applied
on this matrix. Synthetic faces can be obtained by adding a linear
combination of the eigenfaces a,, to the mean face:

Fopin(@) =F+ > am-an, (11)

where «,,, are the weights corresponding to each eigenface.

Visual Comparison. We compare the 3DMM with correspon-
dences based on only texture and depth consistency, as proposed
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Fig. 5. Synthetic faces for a1 € [—3v/A1,3v/A1] and a2 € [—3v/A2, 3v/A2], with A1 and \» being the eigenvalues of the first two eigenfaces.
The model was trained with a set of 500 faces with multiple expressions from the Binghamton Database. (a) Point-to-point correspondences
have been computed with our method. Eyes, eyebrows, mouth, and teeth are clearly defined. (b) Point-to-point correspondences have been
computed as proposed in [1]. Facial features, such as nose, eyes, eyebrows, and mouth are blurred, or even appear twice.

in [1], to a 3DMM with correspondences computed with our
method. Synthetic faces are created for a; € [—3v/ A1, 3v/ 1]
and a2 € [—3v/\2,3v/ 2], where A1 and \s are the eigenvalues
corresponding to the first two eigenfaces. Fig. 5 shows two 3DMMs
which were trained with data from 20 female individuals and 25
different facial expressions per individual. Fig. 5 (b) demonstrates
that the strong expressions let the optical flow method [1] fail, so
that eyes, eyebrows, and mouth are blurred or even appear twice. In
Fig. 5 (a) it can be seen that our method shows promising accuracy
for the dataset with multiple expressions. Eyes, eyebrows, mouth,
and teeth are well-defined and change smoothly when A; and \» are
varied.

6. CONCLUSIONS

In this work a method that computes dense point-to-point correspon-
dences between 3D faces is presented. Correspondences are com-
puted based on texture/depth consistency and landmark consistency
assumptions. The accuracy of correspondences computed with our
method is demonstrated via two applications. Facial texture map-
ping is possible with individuals of different ethnicity and differ-
ent facial expressions. Furthermore, a 3D Morphable Model from
a dataset with faces with different facial expressions is constructed.
The model based on correspondences computed with our method is
visually compared to a model based on correspondences computed
with a previously proposed method. In our ongoing research we are
trying to apply the 3D Morphable Model for tracking applications.

7. REFERENCES

[1] Volker Blanz and Thomas Vetter, “Face recognition based on
fitting a 3D morphable model,” TPAMI, vol. 25, no. 9, pp.
1063-1074, 2003.

[2] Volker Blanz, Curzio Basso, Tomaso Poggio, and Thomas Vet-
ter, “Reanimating faces in images and video,” Comput. Graph.
Forum, vol. 22, no. 3, pp. 641-650, 2003.

[3] Enrique Muiioz, José M. Buenaposada, and Luis Baumela,
“A direct approach for efficiently tracking with 3D morphable
models,” in ICCV, 2009, pp. 1-8.

920

[4] Pascal Paysan, Reinhard Knothe, Brian Amberg, Sami Romd-
hani, and Thomas Vetter, “A 3D face model for pose and illu-
mination invariant face recognition,” in AVSS, 2009, pp. 296—
301.

[5] Ankur Patel and William A. P. Smith, “3D morphable face
models revisited,” in CVPR, 2009, pp. 1327-1334.

[6] N. Litke, M. Droske, M. Rumpf, and P. Schroder, “An image
processing approach to surface matching,” in Symposium on
Geometry Processing, 2005, pp. 207-216.

[7]1 A. Savran and B. Sankur, “Non-rigid registration of 3D sur-
faces by deformable 2D triangular meshes,” in CVPR Work-
shops, June 2008, pp. 1-6.

[8] Moritz Kaiser, Andre Stormer, Dejan Arsi¢, and Gerhard
Rigoll, “Non-rigid registration of 3D facial surfaces with ro-
bust outlier detection,” in WACV, 2009, pp. 430-435.

[9] Brian Amberg, Sami Romdhani, and Thomas Vetter, “Opti-
mal step nonrigid ICP algorithms for surface registration,” in
CVPR, 2007.

[10] A. Savran, N. Alyliz, H. Dibeklioglu, O. Celiktutan,
B. Gokberk, B. Sankur, and L. Akarun, “Bosphorus database
for 3D face analysis,” in BIOID, 2008, pp. 47-56.

[11] Lijun Yin, Xiaozhou Wei, Yi Sun, Jun Wang, and Matthew J.
Rosato, “A 3D facial expression database for facial behavior
research,” in F'G, 2006, pp. 211-216.

[12] Brian Amberg, Andrew Blake, Andrew W. Fitzgibbon, Sami
Romdhani, and Thomas Vetter, “Reconstructing high quality
face-surfaces using model based stereo,” in ICCV, 2007, pp.
1-8.

[13] Moritz Kaiser, Gernot Heym, Nicolas Lehment, Dejan Arsié,
and Gerhard Rigoll, “Non-rigid registration of 3D facial sur-
faces with robust outlier detection,” in WACV, 2011, pp. 39-44.

[14] J. Gower, “Generalized procrustes analysis,” Psychometrika,
vol. 40, pp. 33-51, 1975.

[15] Thomas Brox, Andrés Bruhn, Nils Papenberg, and Joachim
Weickert, “High accuracy optical flow estimation based on a
theory for warping,” in ECCV, 2004, pp. 25-36.



