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ABSTRACT 

 

We develop an algorithm that predicts the best presentation 

of a stereo 3D image in the sense of viewers’ preference. 

The algorithm operates in three steps. First, the 3D image is 

classified as either a “foreground dominant” or “background 

dominant” image. Next, for “foreground dominant” images, 

a model of the stereoacuity function is used to optimize the 

perceptual 3D resolution; for “background dominant” 

images, the nearest surface is placed in the 3D plane of the 

display screen. A human study was conducted to assess the 

algorithm and showed that the proposed model produced 3D 

images which had the best 3D quality scores among several 

candidate algorithms.  

 

Index Terms— 3D image presentation, auto-

convergence, 3D quality, quality of depth, stereo images,  

 

1. INTRODUCTION 

 

Many current cinematic producers include 3D effects as an 

extra incentive to attract larger audiences. In fact, the 

number of 3D films released in 2011 tripled compared to the 

number in 2008; more than forty 3D films were released in 

2011 [2]. However, viewing a 3D film is not a pleasant 

experience for everyone and numerous complaints are 

reported. Uncomfortable 3D viewing experiences may be 

caused by a number of factors, including the method of 3D 

production, the viewing environment (3D display and 

viewing distance), and individual differences [3]. In this 

paper, the discussion will be focused on the 3D production 

part. 

Most 3D content currently available is captured using a 

dual-camera configuration. There are two kinds of dual-

camera settings: the parallel camera configuration and the 

toe-in camera configuration. Both have their own strengths 

and weaknesses. The toe-in camera configuration requires 

more knowledge to successfully shoot stereo videos, since 

the producer needs to decide the convergence point in depth 

during the shooting and post-processing is more difficult 

due to the keystone distortion. Therefore, the 

parallel camera configuration is still often used to capture 

videos especially in low-cost consumer cameras or smart 

phones. When using a parallel configuration, however, post-

processing is required to enable binocular fusion of the 

stereo content and to avoid visual discomfort when viewing 

the captured 3D content.  

The 3D content captured by a parallel camera 

configuration only creates crossed disparity values (shown 

in Fig. 1) which limits the amount of depth that can be 

presented in a stereoscopic display environment. Hence, 

post-processing is necessary to create uncrossed disparity 

values and to shift all disparity values within a range called 

as “zone of comfortable viewing. [4]” A number of studies 

have been conducted in this area, but the zone of 

comfortable viewing is not tightly defined; different 

numbers have been suggested by different authors. For 

example, Wopking [5] claimed that human subjects will not 

experience any discomfort when viewing a stereo 3D image 

if |α – β|  1
◦
  in Fig. 2, while smaller tolerances, such as 

|α – β|  0.5
◦
, have also been reported [3]. 

 
Fig. 1. Left: Illustration of cross and uncross disparity. Right: 

The parallel camera configuration. 

 
Fig. 2. Zone of comfortable stereo viewing. 



To improve the stereo viewing experience, we propose 

post-processing techniques that not only cause the 

disparities in a 3D presentation to fall within the zone of 

comfortable viewing but also deliver an optimal 3D viewing 

experience. Specifically, we seek to compute a best 3D 

presentation that delivers the most pleasant 3D viewing 

experience. 
 

2. PRESENTATION MODEL 

 

Our approach analyzes the content of a given 3D image in 

order to deliver a more pleasant 3D presentation by avoiding 

conflicts in 3D viewing and optimizing stereoscopic depth 

resolution. Human depth perception is affected by both 

monocular cues and binocular cues [6]. Conflicts between 

depth cues may create viewing discomfort or ambiguity in 

perceiving depths. Although it is not yet clear how the brain 

integrates these cues and produces a final sense of depths, it 

is rare to experience conflicting depth cues when viewing 

natural 3D images. Avoiding conflicts of depth cues by 

post-processing of the disparity values will help produce 

pleasant 3D viewing experiences.  

In addition, when viewing a stereo 3D image on a 

stereo 3D display, the focused plane (accomodation of our 

eyes) is fixed on the screen. However, in our daily 3D vision, 

the accomodation of our eyes constantly changes as the 

vergence varies while scanning a 3D scene. Since the focal 

plane is fixed and the vergence plane may vary when 

viewing stereo 3D images on a display, the disconnect 

between accomodation and vergence may reduce the quality 

of depth percept. 

 

2.1. Foreground/ background dominance classification  

 

Naturally, the human eyes have a very wide field of view 

[7], and thus images that we see in our daily life are likely to 

be mostly “background dominant”. Hence, to avoid conflicts 

between depth cues, the composition of a stereo 3D image 

should be carefully considered as an integral part of post-

processing its disparity values. For example, if a stereo 

image is deemed to be “background dominant”, then it 

should be disparity shifted so that it appears to be placed 

farther in the depth when displayed on 3D. Conversely, the 

presentation of a “foreground dominant” 3D image should 

be placed closer to the viewer. 

To implement this idea, a foreground/background 

dominant classification process is needed. We have found 

two factors that can be used to sucessfully classify 3D 

images in this way: the skew of the disparity distribution, 

and Relative Dominant Depth (RDD) in the  3D image.  The 

skew is computed as 
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where 

id is the disparity value of a pixel and d  is the mean 

disparity of the 3D image. Then a 3D image is classified 

being “foreground dominant” if skewness > 1 and 

“background dominant” if skewness < –1. Images which 

have |skewness| < 1 either have a non-normal disparity 

distribution or cannot be classified by skewness. In this case, 

the RDD is used to force a classification, where  
 

)(

)(

disparityinimummdisparityaximumm

disparityinimummdisparityinantdom
RDD




 . 

 

and the                     is the mode of the given 

disparity set. A 3D image is classified as “foreground 

dominant” if |RDD| < ξ and “background dominant” if 

|RDD| > ξ, where ξ = 0.25 in this work.  

 

2.2. Maximizing depth resolution 

 

Krekling [8] showed a minimum degree of variation in 

disparity that is needed for the human vision system to 

perceive different depths between objects. This is called the 

stereo threshold. Studies [1, 6] have shown that the lowest 

thresholds are generally obtained at a zero pedestal disparity, 

and the threshold increases with increasing crossed or 

uncrossed pedestal disparity. The function which provides 

the stereo threshold at different disparities is called the 

stereoacuity function [1]. Fig. 3 shows the stereoacuity 

function of a female subject having normal stereo vision and 

her minimal threshold disparity is 24 arcsec at zero disparity. 

One can see clearly that human stereoacuity is most 

sensitive at the focus plane (the viewing screen in the 3D 

viewing of stereo images) and this observation indicates that 

human vision system has the highest depth resolution for 

objects around zero disparity. 

Consider the case in which two objects have a relative 

disparity of 120 arcsec, but an average disparity of zero. (i.e., 

they have disparityties of +1 and -1 arcmin, respectively) 

The subject, who has the stereoacuity function shown in Fig. 

3, should see these two objects as laying in different depth 

planes. Now consider the case in which they have the same 

relative disparity, but one has a pedestal disparity of +40 

arcmin and thus the other has a pesdestal disparity of +42 

arcmin. In this case, the dispairty between them is below 

threshod, and no relative depth will be perceived. Hence, we 

 
Fig. 3. Stereoacuity function, s(d) with 100 ms stimuli from [1]. 



claim that the subject can see depth with better resolution 

when the two objects are arranged around the zero pedestal 

disparity. To quantify the ability to resolve depth, we 

approximate the negative of the stereoacuity function, i.e. 1 

– s(d), in terms of the pixel disparity with a Gaussian 

function, and call it the “depth resolution function” in this 

work. Then we solve the problem of optimizing the 3D 

presentation of a 3D image by maximizing the perceived 

depth resolution. This operation can be expressed by 

 

                
         

            

 

where the DRF is the depth resolution function using a σ = 

20 arcmin, which is chosen to give the best fit to the 

stereoacuity function. Hist(0) is the histogram of the 

disparity of a 3D image without being post-processed and 

Hist(i) is the histogram of the disparity of a 3D image 

shifted by i. Based on this operation, the shift value that 

yields the maximum product (i.e. opt shift) is deemed to  

provide a best 3D viewing experience in depth.  

 
2.3 Optimizing the presentation 

 

The proposed algorithm is processed by the following steps: 

 

1. Classify an input 3D image into either foreground or 

background dominant image as described in Sec. 2.1. 
 

2. For the foreground dominant image, as described in Sec. 

2.2, find the shift value that yields the maximum 

product of the depth resolution function and the 

disparity histogram.  
 

3. For the background dominant image, find the shift 

value that places the closest surface on the screen.  
 

4. Shift the left and right images so that the resulting 3D 

image has the desired depth according to the shift value 

found in Step 3 or Step 4. Then crop the undefined 

pixels on the boundary. For example, after an image is 

shifted to left by 3 columns, there are three undefined 

columns on the right side of the image.  

 

The overall algorithm is described in Fig. 4.  

 

3. HUMAN STUDY 

 

A human study was conducted to assess the above algorithm. 

The study is described next. 

 

3.1. Study design 

 

A double stimulus continuous quality scale (DSCQS) 

protocol [9] was adopted to obtain subjective 3D quality 

ratings on all of the stimuli in the work. During a single trial, 

a subject compared two 3D images with different depth 

relative to the screen and gave both of them a subjective 3D 

quality score based on his/her preference. The question 

given to subjects is “Give a 3D viewing quality rating” and 

it is a forced-choice procedure so that the subjects could not 

rate both images equal 3D quality scores. A training session 

was also given to each subject at the beginning of the study 

to familiarize them with the Graphic User Interface (GUI) of 

our study program. The training content was different from 

the images used in the study. Repeated viewing of the same 

3D image was allowed before the subject gave a rating.  

 

3.2. Display 

 

An nVidia active 3D kit plus an Alienware OptX AW2310 

full HD 3D monitor were used to display the 3D images. 

The viewing distance from subjects to screen is five times 

the screen height to minimize potential visual discomfort 

caused by the accommodation-vergence conflict.   

 

3.3. Observers 

 

Seventeen naïve observers (seven females and ten males) 

were recruited for the study. The subjects were pre-screened 

to ensure normal stereovision by asking them to distinguish 

the depth of three colored rectangles separated from each 

other by 6 arcmin in depth. 
 

3.4. Stimuli 
 

Twelve stereo images with ground truth disparity were 

chosen as source images. Seven of these stereo images were 

captured by the parallel camera configuration from the 

Middlebury stereo database [10], and five of them were 

artificial 3D stereo images (three were from MPEG 3D 

coding test videos, two were created by the authors). We 

used an approximately equal number of “foreground 

dominant” and “background dominant” image. The original 

resolution of the images was equal to or larger than full HD 

size and they were resized to full HD resolution by cropping 

the extra part.  

To create a baseline without ground truth depth, the 

reference image was created by placing the 

 
Fig. 4. Flowchart of the proposed algorithm. 



closest surface inside the image at the depth of the screen. 

Then, four different stimuli were created by either pulling 

the scene in front of screen or by pushing it deeper into the 

screen by shifting disparities. The distance of two adjacent 

stimuli is 13.7 arcmin. In addition, one scene was created by 

maximizing the depth resolution, as described in Session 2.2. 

Finally, all stimuli have disparities that satisfy the “zone of 

comfort viewing” suggested by [3]. 

 
4. RESULTS AND ANALYSIS  

 

Differential Mean Opinion Score (DMOS) are usually used 

as quality scores annotated to the content in image quality 

database. However, all of the stimuli in this study are 

pristine images, so comparing depth quality among stimuli 

which have different content is meaningless. On the 

contrary, intra-content comparisons can provide insights 

regarding the best perceptual 3D depth range of a stereo pair. 

Hence, the average ranking given by human subjects is 

proposed as a criterion to evaluate the performance of 3D 

images displayed with different (shifted) depth ranges.  

Six different profiles were used for each source image. 

The ranking of each source image ranges from 1 (the best) 

to 6 (the worst). The performance achieved by a 3D 

presentation is represented by the average ranking over 

twelve source images. Two types of rankings were used. 

The first is “ranking DMOS (weighted ranking)” which is 

the ranking sorted by DMOS scores. The second is “ranking 

vote”, which only considers binary decisions (stimulus A 

gets one vote if one subject prefers stimulus A over stimulus 

B) and the ranking is sorted by the voting results. The 

overall ranking is the average of these two rankings. 

The experimental results are shown in Fig. 6. The 

“closer” profile is to set the disparity value of the closest 

surface at -13.7 arcmin (crossed disparity) and the disparity 

value of the closest surface for “farther” and “farthest” 

profiles are 13.7 arcmin and 27.4 arcmin respectively. Four 

observations can be made from Fig. 6. First, the reference 

strategy, which places the closest surface on the screen, has 

a ranking of 3.25. This ranking is slightly better than the 

expected ranking (3.5) when the nearest surface is placed 

randomly inside the zone of comfortable viewing. Second, 

comparing the “closer” and “farther” profiles, we observe 

when extra computation is not allowed, the better strategy is 

to push the closest surface deeper into the screen rather than 

pull it out of the screen. Third, the strategy which 

maximizes the depth resolution performs better than the 

reference strategy, but worse than the “farther” profile. A 

plausible explanation is that this strategy works for 

“foreground dominant” 3D images, but creates depth cue 

conflicts for “background dominant” 3D images. Finally, 

the proposed algorithm which applies both of strategies 

based on content gives the best performance (overall 

ranking is 1.83). 

 

5. CONCLUSION AND FUTURE WORKS 

 

We believe that the degree of comfort in viewing a 3D 

image as a function of the depth range it is assigned is 

correlated with the stereoacuity function of the human visual 

system and the content of the 3D image. A human study was 

conducted which supports our argument. The following 

points can be further considered. First, there should be a 

better strategy in post processing “background dominant” 

images. Our current strategy is simply to place the closest 

surface at the screen for the background dominant images. 

Second, other content-related factors such as object contours 

and the composition of a 3D image may affect the 

perception of a stereo 3D image. 

  

6. REFERENCES 

 
[1] C. M. Zaroff, M. Knutelska, and T. E. Frumkes, 

"Variation in Stereoacuity: Normative Description, 

Fixation Disparity, and the Roles of Aging and Gender," 

Investigative Ophthalmology & Visual Science, vol. 44, 

pp. 891-900, February 1 2003. 

[2] List of 3D movies. Available: 

http://en.wikipedia.org/wiki/List_of_3-D_films 

[3] M. T. M. Lambooij, W. A. Ijsselsteijn, and I. 

Heynderickx, "Visual discomfort in stereoscopic displays: 

a review " Proc. SPIE, vol. 6490, 2007. 

[4] T. Shibata, J. Kim, D. M. Hoffman, and M. S. Banks, 

"The zone of comfort: Predicting visual discomfort with 

stereo displays," Journal of Vision, vol. 11, July 21 2011. 

[5] M. Wopking, "Viewing comfort with stereoscopic 

pictures: An experimental study on the subjective effects 

of disparity magnitude and depth of focus," J. Soci. 

Inform. Display, vol. 3, pp. 101-103, 1995. 

[6] I. P. Howard and B. J. Rogers, Binocular vision and 

stereopsis. New York: Oxford University Press, 1995. 

[7] Y. Le Grand, Light, colour and vision. London: 

Chapman & Hall, 1968. 

[8] S. Krekling, "Stereoscopic threshold within the 

stereoscopic range in central vision," Am. J. Optom. 

Physiol. Optic., vol. 51, pp. 626-34, 1974. 

[9] I. T. U., Methodology for the subjective assessment of the 

quality of television pictures, 2003. 

[10] D. Scharstein and R. Szeliski, "A Taxonomy and 

Evaluation of Dense Two-Frame Stereo Correspondence 

Algorithms," Journal of Computer Vision, vol. 47, pp. 7-

42, 2002. 

 

 
 

Fig. 5. Performance of different 3D image presentation 

strategies. Error bars represent the standard errors.  
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