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ABSTRACT
In this paper, we present a simple but effective method called

Contrast-Aware Saliency (CAS) to detect visual saliency by

utilizing two general characteristics: rareness and compact-

ness. In our approach, multiple-salient-spots are used to find

initial salient clues, which appear to be rare and unique parts

in an image. Then, the salient regions are detected by ag-

gregating the surrounding regions of the spots, which fulfil

the compactness nature of salient objects. Experimental re-

sults show the proposed CAS performs well in the benchmark

dataset.

Index Terms— Image saliency, Salient region

1. INTRODUCTION

Visual saliency has been focused for decades since it is fun-

damental to vision tasks. It is referred to as some image parts

attracting most of visual attention when people see it at first

glance. In applications, salient regions are considered as fore-

ground, thus detecting saliency mostly separates foreground

from background regions [1]. By taking advantage of salient

regions, vision tasks such as segmentation [2] and recogni-

tion [3] could be benefit from the deletion of cluttered back-

ground, easing visual content analysis.

Although methods of detecting salient regions are catego-

rized into top-down [4] and bottom-up approaches [5, 6, 2, 7,

8, 9, 10], bottom-up one interests us more because it detects

general regions of interest without any prior knowledge and

simply measures visual saliency from contrast property. As

seeing the picture shown in Fig. 1 (a), for example, most peo-

ple agree that they are attracted by the yellow flower instead

of green leaves or surrounding fingers. It is the visual contrast

that arouses more of the human visual attention.

Detecting visual contrast has been discussed for a long

time. Achanta et al. [5] present a global-based approach that

preserves a reasonable range of frequency to detect the whole

salient object instead of object border. It shows an acceptable

performance but lacks of the ability to measure the contrast

from a local region (i.e., the contrast between the salient ob-

ject and its surrounding context).

(a) (b) (c) (d) (e) (f) (g)

Fig. 1. When composing a picture like (a), the photographer

tries to guide the audience’s visual attention to the yellow

flower. In comparison, the saliency results of [5, 2, 9, 11, 12]

are reported in (b), (c), (d), (e), (f), respectively. Ours is

shown in (g).

To measure local contrast, sliding-window approaches [2,

10, 7] are well studied. Rahtu et al. [2] separate a sliding

window into foreground and background regions, and then

a Bayesian formulation is employed for saliency detection.

Klein and Frintrop [10] measure saliency by KL-Divergence

between center and surround parts. Liu et al. [7] present a

learning-based framework to detect salient regions. Condi-

tional random field (CRF) is employed to exploit the impor-

tance among distinct features such as center-surround his-

togram. Without knowing the salient object size, however,

the sliding-window approaches must resize their window to

locate the salient objects. Therefore, similar to object detec-

tion, the problem caused by variable object-size will degrade

their performance significantly.

To tackle the object-size problem, biology-inspired model

and graph-based representation [6, 8] are exploited. In the

early work, biology-inspired model [13] tries to simulate the

selection mechanism of human visual system (HVS), and it

has been realized in graphical model recently. Gopalakrish-

nan et al. [6] deem that the most salient node must be isolated

from others; moreover, it should be tightly connected with

the neighboring nodes to express the compactness. Thus,

the most salient node is selected by two criteria: global

isolation and local compactness. Wang et al. [8] combine

biology-inspired model with random walk by proposing the

site-entropy-rate (SER). Random walk in [8] is modeled as

the process of information transmission to capture the long

range relation between adjacent nodes; besides, the center-

surround mechanism is exploited as well. As a result, both of
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[6] and [8] show a reliable performance.

Pixel-based distinctiveness is an another way to model lo-

cal contrast. Goferman et al. [9] express the saliency of a

node from its surrounding and color-distinctive nodes. Thus,

a node’s saliency is obtained from the color distances to the

other nodes weighted by their inverse spatial distances. To

this end, this salient map not only has a good result like hu-

mans but can carry the meaning of the scene as well, making

it suitable for applications such as image retargeting.

By reviewing the literature, lots of works agree that the

objective of saliency is application dependent. Although the

topic-specified saliency (or top-down saliency) does well for

individual applications [4], it fails in other applications owing

to lacking of the generalization ability. On the contrary, with-

out assuming object characteristics, bottom-up approaches

have better general detection capabilities for various kinds of

images. From this point of view, general-purpose saliency

detectors are more promising than topic-specified detectors

in most kinds of applications.

We present a novel saliency detection method by em-

ploying two general principles: rareness and compactness.

Rareness assumes that few salient nodes must be distinctive

enough to attract the audience’s concentration, while com-

pactness suggests that pixels in an object have similar color

to the nearby pixels. In rareness property, multiple-salient-

spots hypothesis is employed to discover useful salient clues

(nodes). To fulfil the compactness of semantic object, the

salient nodes spread their saliency based on color and spatial

smoothness to the neighboring nodes. Finally, salient regions

can be detected by thresholding the saliency map obtained.

2. PROBLEM FORMULATION AND APPROACH

Given a n×n image I as input, each pixel in the image is rep-

resented by CIELab color space, I = {L, a, b}. The salient

detector f takes the input I and generates its saliency map G.

Each pixel in G is proportional to its degree of saliency.

We use patch-based representation: an image I is divided

into M non-overlapped patches {P1, ..., PM}. Pi, where 1 ≤
i ≤ M , is a k×k image patch which is centered at the position

P spa
i ∈ R

2. We further denote the color vector formed by the

k × k pixels as P cor
i ∈ R

k×k×3. In the implementation, we

set k = 5.

2.1. Salient Spot Discovery

Rareness reflects the property of distinctiveness that few

pixels must be visually unique to inspire human visual con-

centration. It can be easily discovered from global and local

contrasts. Absolute contrast (Sec. 2.1.1) and bin contrast

(Sec. 2.1.2) are to cooperate in the proposed global contrast.

2.1.1. Absolute Contrast

Absolute contrast (AC) preserves the color distinctiveness by

measuring the �2-norm distance between the given patch Pi

and the averaged patch from the image. The averaged patch

is defined as mean(I) = 1
M

∑M
j=1 P

cor
j . Thus, absolute con-

trast is defined as:

AC(Pi) = ||P cor
i −mean(I)||2. (1)

2.1.2. Bin Contrast

In order to emphasize the uniqueness of the rare-color

bins, their saliency should be larger than the saliency from

common-color bins. Thus, we evaluate a bin’s frequency

to reflect its saliency. In detail, we separate the M patches

into B clusters, H1, H2, ..., HB , via Normalized Cut [14]

in Euclidean space, and |Ha| indicates its population where

1 ≤ a ≤ B. The bin contrast for a patch Pi is defined as:

BC(Pi) = exp (−γ × |Ha|∑B
b=1 |Hb|

), (2)

for each P cor
i ∈ Ha. We use γ = 1 to convert the population

of a cluster into its contrast degree, and set B = 2.

These two contrasts can preserve global saliency well, but

they still cannot emphasize local contrasts owing to miss-

considering spatial property. Local contrast is thus considered

further in the following.

2.1.3. Local Contrast

Local contrast can be exploited as a counter concept of

self-similarity. Self-similarity proposed by Shechtman and

Irani [15] measures the local structure (LS) likeness across

images: For pixel u, the LS measures the similarity of a small

patch pu centered at pixel u with respect to a larger regions

Ru: LS(u) = exp(SSD(pu,pv)
σ ), where v ∈ Ru and SSD

denotes the sum of squared differences. Thomas and Vitto-

rio [16] extend this idea into global structure (GS), i.e. Ru is

the whole image.

To extend the concept of self-similarity to discover local

contrast, we use the term ‘distinction’ for precisely describ-

ing the saliency (or contrast). The distinction between two

patches (Pi and Pj) is defined similar to that in [9]:

d(Pi, Pj) =
||P cor

i − P cor
j ||2

1 + λ||P spa
i − P spa

j ||2 , (3)

where λ = 1 is used to balance between the spatial and color

information. The local contrast for a patch Pi is defined as:

LC(Pi) =

M∑

j=1

d(Pi, Pj). (4)
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2.1.4. Multiple Contrast Fusion and Spatial Weighting

The contrasts from local and global visual clues are inte-

grated. We multiply AC, BC, and LC together for fusion

them:

MC(Pi) = AC(Pi)×BC(Pi)× LC(Pi). (5)

Besides feature-based contrast, spatial weighting merits

consideration according to [17]. A prior spatial weighting is

assumed to have the following properties: 1) the center part

of an image plays a great importance in catching the visual

attention. 2) the visual attention is degraded as the patch is

far away from the center part. The spatial weighting for a

patch Pi is formulated as follows:

PW (Pi) = exp(−||P spa
i − s||22

ϕ
), (6)

where s is the 2D position of the image center and ϕ = 80 for

400× 300 images. The weighted contrast is defined as:

MCW (Pi) = MC(Pi)× PW (Pi). (7)

Finally, the salient spots SP are computed by ranking

the salient patches according to the MCW criterion (or other

weighted contrast criteria discussed in the experiment):

SP (MCW ) = {Pi|rank(MCW (Pi)) ≤ α×M, ∀i}, (8)

where rank(MCW (.)) ranks the values of MCW in the de-

creasing order, and α = 0.05 is used. After discovering the

salient spots by spatial weighting and multiple contrasts fu-

sion, we spread their saliency to the neighbors for the com-

pactness as introduced below.

2.2. Salient Value Transmission

Compactness is another property of saliency focused in this

study. It stands for the smooth characteristic of an object ei-

ther in appearance or space. Two properties are considered: 1)

the patches with smooth color should be located in the same

object no matter how far they are. 2) the patches nearby the

salient spots should be regarded as salient regions as well. To

reflect these two characteristics, we define the color smooth-

ness (CS) for each patch Pi to the SP in the following:

CS(Pi) = max
∀Pj∈SP

exp(
−||P cor

i − P cor
j ||2

σ
), (9)

and spatial consistency (SC) is further formulated as:

SC(Pi) = max
∀Pj∈SP

exp(
−||P spa

i − P spa
j ||2

δ
), (10)

where σ = 2 and δ = 100 in the experiments.

The proposed salient map G, therefore, is achieved by

multiplying the color smoothness and spatial consistency:

G(Pi) = CS(Pi)× SC(Pi), 1 ≤ i ≤ M . The salient map G
is further normalized into [0, 1].

3. EXPERIMENTAL RESULTS

We evaluate our saliency method in a benchmark dataset

from Achanta et al. [5] which contains 1,000 color images,

and each one has its pixelwise binary (foreground and back-

ground) ground truth. For quantifying the experimental re-

sults, we normalize the range of the saliency map into [0, 255]
and express it in a binary notation. The pixel is marked as

foreground when its salient value is no smaller than the

threshold t, and is labelled as background otherwise. For

each t varying from 1 to 255, we obtain the averaged pre-

cision and recall, and then plot the results into a curve for

comparison. The above experimental settings are the same

as [5, 11, 12, 10].

In the first experiment, we compare the usefulness of mul-

tiple contrasts as shown in Fig. 2. Each contrast is weighted

by PW ; thus we name contrast AC, BC, and LC as ACPW ,

BCPW , and LCPW , respectively. The salient spots in Eq.

(7) are ranked accordingly. Moreover, MCW is the fused

contrasts as in Eq. (6). From the result, we find that AC
is more effective than BC and LC since it provides a uni-

versal concept to detect the saliency. However, MCW sur-

passes AC, indicating that the global-based consideration is

not enough. Instead, by combining with AC, BC and LC
simultaneously, MCW can discover salient regions better.

Later, we compare the performance with the state-of-the

art methods as plotted in Fig. 3. The compared performance

is reported from their papers or codes. For convenience, we

name the compared methods as FT [5], CX [9], RC [12]

BITS [10], SS [2], MSSS [11] and CAS (the proposed one),

respectively. From the curves, the results show that CAS

and RC both have comparable detection performance, which

outperform FT, CX, BITS, SS, and MSSS. This result claims

that CAS has efficacy similar to RC which measures image

saliency from region-level contrast computation. Segmenting

an image into regions is a prerequisite for RC. However, we

could have no prior knowledge on how to select the param-

eters for image segmentation to produce better salient maps.

By contrast, the general assumptions in CAS make it has less

restrictive, and still performs better than the sliding-window

approaches (SS [2] and BITS [10]). More saliency-detection

results are shown in Fig. 4.

4. CONCLUSION

We have presented a simple but effective saliency detection

method by employing two general concepts: rareness and

compactness. The experimental results have shown that the

proposed method provides reliable detection results owing to

multiple contrasts consideration and general salient object as-

sumption. In future, the proposed method has the potential

to be extended to video saliency detection by taking motion

information into account.
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Fig. 2. The compared performance of each individual contrast

ACPW , BCPW , and LCPW as well as the fused contrast

MCW .

Fig. 3. The compared performance of the methods from

FT [5], CX [9], RC [12] BITS [10], SS [2], MSSS [11] and

CAS (the proposed one)
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