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ABSTRACT

Liquid chromatography mass spectrometry (LC-MS) is widely

used in comparing proteomes for disease biomarker discov-

ery. An LC-MS experiment produces a 2-D image, where

the mass-to-charge ratio and the chromatographic retention

time are the coordinates, and the signal intensities represent

the abundance of detected peptides. However, there is always

a non-linear retention time difference across replicate LC-

MS images due to machine drift, such that synchronization

of LC-MS images must be performed prior to any further

analysis.

In this paper, we propose a multi-resolution image align-

ment scheme to synchronize LC-MS images. Dynamic Time

Warping (DTW) is used to reconcile the time differences

among images and Kullback-Leibler distance (KLD) is used

as a local distance measure. Our proposed scheme has been

validated using two real data sets, and promising results have

been obtained.

Index Terms— multi-resolution, LC-MS, DTW, KLD

1. INTRODUCTION

Detection and identification of chemicals in a complex mix-

ture is crucial in many chemical analyses, such as the identi-

fication of peptides in the study of proteomics. Liquid chro-

matography mass spectrometry (LC-MS) is one of the most

widely used analytical chemistry technique for determining

the elemental composition of chemical compounds. LC-MS

combines the physical separation capabilities of liquid chro-

matography with the mass analysis capabilities of mass spec-

trometry to provide a two-dimensional approach to compare

chemical mixtures by both the mass-to charge ratio and LC re-

tention time. The resulting 2D LC-MS image can be viewed

as a profile of all chemicals in a mixture. One major problem

in analyzing LC-MS images is the problem of time shifting

in the retention time dimension. Even for the same chemical

mixtures, different LC-MS images are produced across dif-

ferent runs of LC-MS experiments because the retention time

dimension of LC-MS images varies non-linearly due to ma-

chine drift, which means that the produced LC-MS images are

stretched and shrunk locally compared to each other. Without

accurate time alignment between two LC-MS images, non-

linear retention time shift of two images will lead to incor-

rect statistical comparisons. As a result, synchronization of

LC-MS images must be done prior to performing any further

analysis.

In this paper, a multi-resolution LC-MS image alignment

scheme using Dynamic Time Warping (DTW) alogrithm [1]

and Kullback-Leibler distance (KLD) [2] is proposed. DTW

is a popular dynamic programming algorithm for reconcil-

ing the time difference between two sequences with different

lengths which minimize the effects of local time shifting by

allowing the sequences locally translated, compressed and ex-

panded. Besides, KLD is employed in combined with DTW

as a local distance measure for alignment. Although DTW

can yield an optimal solution, it is not cost effective to ac-

complish this by searching the whole solution space, and thus

several constraints are proposed to confine the search space

[3, 4]. However, this causes a problem when the optimal so-

lution lies outside the search space. To overcome this prob-

lem, multi-resolution images are down-scaled from the orig-

inal LC-MS image, and the optimal solution is found itera-

tively. Comparisons of time alignment quality with an exist-

ing time alignment algorithm have been performed. We have

also validated our alignment scheme using two real data sets,

and promising results have been found.

2. LC-MS IMAGE ALIGNMENT

In this section, a brief description of the structure of LC-MS

images is presented. Then, the nature difference between LC-

MS image alignment and traditional image registration is also

examined. Finally, some approaches developed to align LC-

MS images are described.

2.1. Image Structure

A LC-MS image can be viewed as a sequence of mass spectra

produced at different scan time during a chemical experiment

where the LC retention time and mass-to-charge ratio (m/z)

are the x-axis and the y-axis of the image respectively.

A LC-MS image can provide a two-dimensional approach

to analyze a chemical mixture by both the mass spectra and
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(a) Mass Spectrum (b) Liquid Chromatogram

Fig. 1: LC-MS Image viewing along x and y-axis.

liquid chromatograms. The mass spectra are represented by

column vectors at different retention time as shown in Fig-

ure 1a and the liquid chromatograms are represented by row

vectors at different mass traces as shown in Figure 1b.

2.2. Problem Nature

Aligning LC-MS images is different from ordinary image

registration problems because traditional image registration

methods do not fit the nature of the problem. Rigid image

registration methods cannot be applied because the target LC-

MS image is generally stretched and shrunk locally compared

to the source image. Although non-rigid image registration

methods can determine the correspondence in two LC-MS

images by some localized stretching of the images, those

methods have to enforce the constraint that LC-MS images

are only stretched and shrunk along one dimension (i.e. the

retention time dimension). More importantly, it is likely to

get stuck into a local minimum because the objective function

should not be simply convex, yet with many local minima.

Since it is known that LC-MS images are aligned column

by column, instead of solving this alignment problem by a

2D image registration method, we align the images by the

Dynamic Time Warping (DTW) algorithm.

2.3. Related Work

A few approaches have been introduced to align LC-MS im-

ages using DTW. For example, the simplest method is to use

one-dimensional profiles such as the Total Ion Chromatogram

(TIC) or Base Peak Chromatogram (BPC) to represent the en-

tire 2D LC-MS images, which works only if the images have

a relatively simple structure. This method often leads to mis-

alignment of LC-MS images produced from complex mix-

tures because compounds with different m/z values but elut-

ing at the same retention time are not considered separately by

using only one-dimensional information. Some approaches

treat the information of different mass traces separately in the

local distance used by DTW to ensure that the intensity infor-

mation of compounds with different masses is not mixed. For

(a) Itakura global constraint (b) Sakoe-Chiba band constraint

Fig. 2: Typical constraint.

example, Christin et al. [5] use a Component Detection Algo-

rithm (CODA) [6] to select high quality mass traces from the

entire image prior to performing alignment.

3. METHODOLOGY

In this section, some background information about the theory

of Dynamic Time Warping (DTW) is presented. Moreover,

the distance measure employed in this paper, the Kullback-

Leibler distance (KLD), is also described. Finally, our pro-

posed multi-resolution LC-MS image alignment scheme is

explained in detail.

3.1. Dynamic Time Warping

Dynamic Time Warping (DTW) is a widely used algorithm

for finding an optimal match between two sequences with

different lengths by non-linearly warping the sequences such

that similar objects are aligned and the overall distance be-

tween them is minimized. Consider two sequences:

Xn = x1x2...xi...xn

Ym = y1y2...yi...ym

To align the sequences, DTW constructs an n-by-m ma-

trix called the warping matrix where the (i, j)th element of

the matrix is the minimum accumulated distance of the op-

timal warping D(i, j) for the subsequences Xi and Yj . The

minimum accumulated distance of the optimal warping for

the whole sequences Xn and Ym, namely D(n,m), can be

found by solving the following optimization problem:

D(i, j) = min

⎧⎨
⎩

D(i− 1, j) + d(i, j)
D(i− 1, j − 1) + 2 · d(i, j)
D(i, j − 1) + d(i, j)

⎫⎬
⎭

where d(i, j) is the local distance between the objects xi and

yj .

By storing the predecessor of each element in the warping

matrix, an optimal warping path P ∗, consists of a sequence
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of order pairs, can be reconstructed by backtracking (see Fig.

2.). The optimal path indicates how the sequences should be

aligned, for example, an order pair (i, j) in the warping path

means that objects xi and yj should be aligned together.

In general, some constraints should be applied to limit the

search space in order to reduce the running time. Figure 2a

shows the Itakura global constraint [3] and Figure 2b shows

the band constraint proposed by Sakoe and Chiba [4]. The

Sakoe-Chiba band constraint forbids the optimal path to de-

viate ±M points from the linear path starting at point (1, 1).
To include the destination point (n,m) in the search space,

M has to be equal to or greater than the absolute difference

between n and m, that is,

M ≥ |n−m|

3.2. Kullback-Leibler Distance

As stated above, a local distance measure, which measures

the distance between objects of the sequences, has to be de-

fined in order to apply DTW. Recall that the LC-MS images

are aligned column by column, so each element belonging

to the same column should be moved as a whole. As a re-

sult, ”objects” represent columns of a LC-MS image, that is,

the mass spectra scanned at different retention time (see Fig.

1a.). In order words, a distance measure suited to evaluate the

difference between two mass spectra is required.

In this study, Kullback-Leibler distance (KLD), which

is a widely used measure in the field of information the-

ory, is employed as the local distance measure. KLD is a

non-symmetric measure originally used to evaluate the dif-

ference between two probability distributions, which in turn

can measure the difference between two mass spectra:

D(Pxi
‖ Pyj

) =
∑
m

Pxi
(m)ln

Pxi(m)

Pyj(m)

However, KLD is only defined if Pyj (m) > 0 for any mass

traces m such that Pxi(m) > 0, otherwise D(Pxi ‖ Pyj ) will

become infinite. To fulfill this requirement, an insignificant

intensity value ε is added to the whole image as background

intensity. Moreover, the standard KLD is a non-symmetric

distance measure, meaning that it is not a true metric. We

therefore employ the symmetric version of KLD as follows:

D(P ∗
xi
‖ P ∗

yj
) =

∑
m

((
P ∗
xi
(m)− P ∗

yj
(m)

)
ln

P ∗
xi(m)

P ∗
yj(m)

)

where P ∗(m) is the probability after adding the background

intensity ε. When two mass spectra are similar to each other,

the value of D(P ∗
xi
‖ P ∗

yj
) is expected to be small.

3.3. Multi-Resolution LC-MS Image Alignment

As shown in Figure 2, different constraints are proposed to

reduce the search space of the optimal path P ∗. However, the

(a) s = 4 (b) s = 2 (c) s = 1

Fig. 3: Multi-Resolution LC-MS Image Alignment.

actual optimal path P ∗ may lie outside the search area, which

will result in a failure alignment.

As a result, a multi-resolution LC-MS image alignment

scheme is proposed. Firstly, the original image I is down-

scaled by a factor of s, constructing several down-scaled im-

ages at different levels, Is, such that Is = I when s = 1. In

this study, three resolution levels are implemented, i.e. s =
1, 2, 4. Notably, the original image is not only down-scaled

along the retention time dimension, but also the m/z dimen-

sion, resulting in ”shorter” mass spectra at the lower resolu-

tion level. Secondly, DTW is performed iteratively starting

from the lowest resolution level to the highest resolution level

(i.e. s = 1), and the warping path found at the previous res-

olution level 2s is used to confine the search space Ss of the

current resolution level s as follows:

Ss = P2s ±M

where M = |n−m| ∗ s. At the lowest resolution level, P2s

is equal to the linear path starting at point (1, 1), and the con-

straint becomes the Sakoe-Chiba band constraint. Figure 3

demonstrates the iterative process of finding the optimal path.

By searching a warping path in a lower resolution warping

matrix, the area of the search space is actually increased, re-

sulting in a higher chance of including the optimal warping

path in the next resolution level.

4. EXPERIMENTAL VALIDATION

To validate our proposed LC-MS image alignment scheme,

several experimental results with two real-world data sets of

LC-MS images are presented. Apart from statistical results,

graphical illustration is also provided to show how LC-MS

images are aligned. Comparison of time alignment quality be-

tween our proposed scheme and DTW-CODA [5] have been

also performed.

4.1. Set-up

The experiment was run on a server with Intel Core i7 @ 2.67

GHz and 12GB of RAM. Two real-world data sets used in the

experiments are QS and MOUSE. QS is a real-world data set

consists of 3 pairs of LC-MS images with high mass accu-

racy produced from the tryptic digests of human blood serum
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(a) Before Alignment (b) After Alignment

Fig. 4: Comparsion of mass traces before and after alignment.

spiked with six standard nonhuman proteins at different con-

centrations. MOUSE is a real-world data set consists of 17

LC-MS images with low mass accuracy of mouse blood sam-

ples.

To validate the alignment accuracy, we randomly gener-

ated 100 synthetic LC-MS images for each real LC-MS im-

age. Compared to its corresponding real LC-MS image, those

synthetic images are shifted non-linearly along the retention

time dimension. In total, 2300 synthetic LC-MS images were

generated and each of them was aligned with the correspond-

ing real LC-MS image. Since the synthetic images are arti-

ficially generated, the optimal warping path can be obtained

as a benchmark. For each alignment, we calculated the root-

mean-squared deviation (RMSD) between the experimental

warping path and the optimal warping path. Moreover, we

defined a criteria that, for each alignment, RMSD has to be

less than 1 scan in order to be claimed as successful.

4.2. Statistical Results

Table 1 shows the average success rate of alignment. Experi-

mental results showed that our proposed method perform bet-

ter than DTW-CODA for both data sets. For QS and MOUSE,

our method (3 resolution levels) outperformed DTW-CODA

for about 30% and 25% in the average success rate respec-

tively. It is also observed that some unsuccessful alignment

of DTW-CODA was caused by an optimal path lying outside

the search space, while our method could obtain a successful

alignment for those cases.

4.3. Graphical Illustration

Apart from numerical verification, Figure 4 provides a graph-

ical illustration to demonstrate how real LC-MS images are

aligned by our proposed method. We selected the same mass

trace from a pair of LC-MS images in QS and the cross-

section of the images before and after alignment are showed

respectively. As shown in the figures, the originally unaligned

peptide peaks are matched to the same retention time after

performing the alignment, and hence the LC-MS images are

correctly aligned.

Table 1: Success rate Comparsion

Success rate (%) QS Mouse

Our method (3 resolution levels) 96.50 97.88

Our method (2 resolution levels) 87.33 88.82

DTW-CODA 66.17 72.47

5. CONCLUSION

In this paper, we propose a multi-resolution image alignment

scheme to synchronize LC-MS images. By down-scaling the

LC-MS images at different resolution levels, the Dynamic

Time Warping (DTW) algorithm is used in combined with

the Kullback-Leibler distance (KLD) for iterative alignment.

Our proposed scheme has been validated using two real

data sets and promising results have been demonstrated. Our

method has also been compared with an existing alignment al-

gorithm DTW-CODA, experimental results showed that our

method performs better than DTW-CODA in alignment ac-

curacy. For future work, we will consider the possibility of

various local distance measures used in combined with DTW.
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