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ABSTRACT

Low-cost monitoring cameras/webcams provide unique visual infor-
mation. To take advantage of the vast image dataset captured by a
typical webcam, we consider the problem of retrieving weather in-
formation from a database of still images. The task is to automati-
cally label all images with different weather conditions (e.g., sunny,
cloudy, and overcast), using limited human assistance. To address
the drawbacks in existing weather prediction algorithms, we first ap-
ply image segmentation to the raw images to avoid disturbance of
the non-sky region. Then, we propose to use multiple kernel learn-
ing to gather and select an optimal subset of image features from
a certain feature pool. To further increase the recognition perfor-
mance, we adopt multi-pass active learning for selecting the training
set. The experimental results show that our weather recognition sys-
tem achieves high performance.

Index Terms— Weather recognition, panorama images, image
segmentation, multiple kernel learning, active learning

1. INTRODUCTION

Weather report is a traditional way to provide meteorological infor-
mation. Due to the restricted density of weather stations (e.g. only
around 30 major stations across Switzerland), low-cost wireless sen-
sor networks have emerged to collect local environmental informa-
tion [1] [2]. Among all available sensing capabilities, image sensors
provide unique visual information of the target field. In particular,
some non-measurable weather information can be obtained from im-
ages, such as the cloud amount defined by World Meteorological
Organization (WMO Code 2700). However, retrieving such infor-
mation autonomously remains a challenging problem. Typically, all
the images are manually labeled with different weather condition se-
mantics. This procedure requires a lot of labor.

To improve the labor efficiency, the following problem is con-
sidered: There are N raw images collected by a static environmental
monitoring panorama camera, which is programmed to capture im-
ages periodically, and only a portion of J images can be manually
labeled with a proper semantic term (e.g., sunny or cloudy). Then,
all the other images need to be labeled automatically with a high
confidence.

This problem is a specific application of image recognition [3].
There are some related work on weather prediction from images as
in [4] [5] and the drawbacks are as follows:

1) The whole image was treated as input, which is inaccurate be-
cause not all parts are directly related to the weather condition.

2) Different image features (color, shape, etc.) were combined into
a single feature vector for SVM training. This will increase the
dimensionality dramatically. As a result, more training samples

(a) ''Sunny''

(b) ''Cloudy''

(c) ''Overcast''

Fig. 1. Panorama images taken from the roof of BC building at
EPFL.

and computational power are required (Curse of Dimensionality
[6]).

3) Not all image features are necessary for weather recognition task.
However, to the best of our knowledge, there is no methodolog-
ical approach existing for selecting an optimal subset of features
from a certain feature pool.

4) Single pass SVM learning is inefficient for a learning task with
training budget.

In this paper, we propose several methods to solve these prob-
lems and build a systematic weather inference framework. As the
weather information is mainly concentrated in the cloud patterns, in
Section 2, we propose a method to extract sky region to eliminate the
disturbance of the foreground (e.g., buildings, mountains). In Sec-
tion 3, we propose to use multiple kernel learning (MKL) to gather
and select an optimal subset of image features from a feature pool.
We adopt active learning technique for selecting training sets to in-
crease the recognition performance. Section 4 evaluates the overall
system using the panorama image dataset collected on the roof of
BC building at EPFL1. Each image is categorized into three possible
weather categories: sunny, cloudy, or overcast as shown in Fig. 1.
Experimental results show that our system has high accuracy for the
labeling.

2. SKY EXTRACTION

In our algorithm, we infer the weather information from the sky parts
of the images. Thus the first step is to detect the sky parts in the
images. Our sky extraction algorithm is based on two observations.
First, clouds in the sky are dynamic, while camera and buildings are
static. Secondly, the sky is at the top of the images, and buildings
are at the bottom.

1http://panorama.epfl.ch provides high resolution (13200 ×
900) panorama images from 2005 till now, recording at every 10 minutes
during daytime.
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Fig. 2. Sky region extracted using Algorithm 1: the sky and the foreground buildings/mountains are separated by the yellow line.

The details of sky extraction is described in Algorithm 1. The
main idea is to calculate the accumulative residual image from suc-
cessive image frames, and then to apply morphology operations and
thresholding in order to obtain a sky region mask. As the sky is more
dynamic compared to the foreground, it has a higher residual value.
We can discriminate the sky from buildings and mountains through
the residual value. Some reflective facets of buildings can also vary
greatly as light conditions change. To distinguish this with the sky
region, we explore the second observation, i.e., weighting the resid-
ual map according to the vertical height in a squared manner.

Fig. 2 shows the sky region extraction result obtained from a
sample image sequence of 30 frames (3 days). It can be seen that
over 98% of the sky is correctly classified as the sky region, and
all foreground buildings and mountains are classified as the non-sky
region. The outlier (as denoted in Fig. 2) is attributed to the fact that
there is some part of the sky comparatively static in a certain period.
Nevertheless, as the camera is static in our setup, such errors will be
eventually averaged out in a long run.

Algorithm 1 Pseudocode of sky region extraction algorithm

1: initialize WEIGHT: scaled in a squared manner w.r.t height
2: LAST=1st image frame, RESIDUAL=0, COUNT=0
3: threshold THRE= 40, refreshing period PERIOD=20
4: while a new image CURRENT is loaded do
5: RESIDUAL = RESIDUAL + abs(CURRENT-

LAST)×WEIGHT
6: MASK = normalize(RESIDUAL) > THRE
7: image erode and dilate applied to MASK to remove small frag-

ments
8: if COUNT%PERIOD==1 then
9: RESIDUAL = RESIDUAL×MASK to cleanup accumula-

tive errors in the foreground
10: end if
11: COUNT++
12: LAST=CURRENT
13: end while
14: output MASK as the sky region

3. RECOGNITION

After the sky region is properly segmented from the raw images,
our weather recognition system includes two main stages: feature
extraction and learning. To overcome the feature gathering and se-
lection problem as mentioned in Section 1, we propose to use mul-
tiple kernel learning (MKL) to select an optimal linear combination
of image features. Then, we adopt active learning technique as a
multi-pass recognition framework to further improve the recognition
accuracy.

3.1. Feature gathering and selection

We use the “bag of words” method [3] to extract features from the
raw image. This approach generates spatially uncorrelated features,

and thus is suited for our problem because cloud patterns are also
randomly distributed. The details of the feature extraction algorithm
for each feature are explained in Algorithm 2.

Algorithm 2 Pseudocode of the feature extraction algorithm

1: Build a 2-D feature map (the size of image 3966 × 270) from
the raw image, for a certain feature, e.g., HSV color.

2: Mask the feature map with the sky region, and divide the masked
part into small tiles (e.g., 600 32×32 tiles for each image).

3: Compute the local histogram of each tile (e.g., 600 128× 1 his-
tograms for each image).

4: Aggregate histograms from all images, and cluster them into K
clusters using K-means clustering algorithm. Each tile is as-
signed an id in the range 1 ∼ K.

5: For each image, calculate the distribution of tiles’ id (a K × 1
histogram). This is the final feature vector extracted.

After different features are extracted (e.g., HSV, gradient, etc),
we need to solve the problem on how to gather all these features for
recognition. MKL [7] has been recently proposed for similar prob-
lem. The main idea behind this technique is to learn an optimal linear
combination of feature kernels. In this way, the dimensionality of the
problem is only increased with a few weighting coefficients, while
the recognition accuracy is improved by gaining higher discrimina-
tive power.

Table 1. Features extracted from cloud patterns

Name Description Type

H,S,V hue, saturation, and brightness
of HSV color space

color

PHOW SIFT on a dense gird at a fixed
scale [8]

shape

LBP local binary patterns (17 bins)
in a texture [9]

texture

Gradient gradient magnitude computed
by Sobel operators

texture

Motion residual computed from refer-
ence image

dynamics

Table 1 lists several features that we used in the experiments,
which represent various aspects of cloud patterns. Note that for
PHOW [8], the feature is not extracted by using Algorithm 2. PHOW
itself computes SIFT at a given grid size (tile size), which can be
directly clustered to form a “bag of words” feature. The Motion
feature represents the dynamics of clouds, which utilizes redundant
adjacent images (the original datasets contains six images per hour,
while we only label one image per hour). It is based on the intu-
ition that cloudy images may have higher motion than sunny and
overcast ones.

To select a good subset of features from such a feature pool, we
first use the MKL to learn an optimal weights for all features, and
sort their weights in descending order. As the corresponding weight-
ing coefficient of each feature represents its discriminative contribu-
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Fig. 3. Recognition routine via active learning: starting with J/M
randomly chosen images, J/M additional images are appended to
the training set through smart selection at each learning pass. After
M − 1 iterative passes, totally J training images are labeled by hu-
man (N unlabeled images in the beginning). The rest N −J images
are then labeled autonomously through recognition. At any pass, the
training set and the test set constitute the whole image corpus.

tion to the overall recognition performance, thus it can be used as
a measure for feature selection. We start from the most discrimina-
tive feature. Then, each feature is progressively added for testing
according to the ranking, until the recognition performance stops to
increase. These selected features provide the optimal choice.

3.2. Recognition via active learning

Traditional image recognition [3] assumes that the training set is
fixed. In our case, however, the training set is not given in the be-
ginning and needs to be labeled manually. Thus, we want a small
but efficient training set. In the experiment, if the training set is
drawn randomly from an image corpus, the recognition precision
varies greatly with every iteration. Such phenomena is due to the
fact that a random training set can not represent the whole image
feature space well.

To improve the recognition performance, the training set is cho-
sen through an iterative procedure, where SVM can query an ora-
cle (human) to label some images during the process of learning.
Such methodology is called active learning [10]. The basic prin-
ciple is that in the recognition stage, the SVM returns the distance
wk between an unlabeled image Ik and the separating hyperplane.
As a SVM finds the maximum-margin hyperplanes during the train-
ing stage, wk can be treated as a natural measure of the recognition
uncertainty of Ik. By sorting wk of all the unlabeled images, we
can select those with small values as the new training set in the next
pass. Based on this idea, our weather recognition system is depicted
in Fig. 3.

4. EXPERIMENTS

We evaluate our algorithm using 1000 images from our panorama
image dataset (one image per hour in 2010, and downsampled to
a resolution of 3966 × 270). Each image is categorized into three
possible weather categories (as specified in Table 2). All images
are manually labeled to serve as the ground truth, from which J

Table 2. Weather categories and number of images per category.

Weather label Description
Number
of images

sunny less than 50% of clouds 276

cloudy between sunny and overcast 251

overcast no visible blue sky 473

Table 3. Weighting coefficients given by MKL (discriminative
power in descending order).
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Fig. 4. Recognition accuracy of various features. 500 images are
randomly chosen as the training set, and the recognition accuracy is
recorded by testing the other 500 images (J = 500, no active learn-
ing). The error bars show the standard deviations obtained from 100
repetitions of each experiment. (a) Performance of each single fea-
ture. (b) Performance of feature combination with new features pro-
gressively added to MKL. The first four features provide the optimal
choice.

images are chosen as the training set and the rest as test set (which
is assumed to have no labels in recognition). The implementation of
algorithms are based on VLFeat libraries [11].

The following parameters are chosen by cross validation and
fixed throughout all evaluations: the local histogram bin number is
128 except for LBP, the number of clusters is 200, the tile size of
Algorithm 2 is 32, the soft margin of SVM is 10; and the scale of the
PHOW feature is 24.

4.1. Feature selection

To select an optimal subset of features from the feature pool as listed
in Table 1, we first use the state-of-the-art algorithm of MKL [12]
with Chi-Square kernel to learn the optimal weights for all features.
Table. 3 shows the weights obtained by MKL. The features are sorted
according to their weights.

We also evaluate the recognition accuracy of each single feature.
For each test, 500 images are randomly chosen as the training set,
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Fig. 5. Recognition performance for different number of passes M
(as defined in Fig. 3). PHOW+HS+LBP are used as features and learnt
under the Chi-Square MKL. For each test, the recognition accuracy
is evaluated from the remaining 1000 − J images. (a) Recognition
accuracy versus the number of training samples J curves. (b) Corre-
sponding standard deviation of recognition accuracy.

and 100 repetitions are carried out to obtain the mean and standard
deviation of recognition accuracy. It is shown in Fig. 4a that the fea-
ture with higher weight has better discriminative power (recognition
accuracy), as we mentioned in Section 3.1.

Knowing the relative discriminative power of features, we eval-
uate the recognition accuracy with the PHOW feature first, and then
progressively add one more feature to MKL according to their
rank in Table 3. As shown in Fig. 4b, the combination of the first
four features outperforms other combinations. With these features,
the shape, color and texture of images are conveyed respectively.
In the following experiments, we choose these PHOW+S+H+LBP
as the optimal feature selection for our task. Such procedure
shows great advantage in practice, because it reduces complex-
ity by avoiding unnecessary feature extractions, i.e., computation
for V+Gradient+Motion can be skipped.

4.2. Active learning

We evaluate now if active learning can improve the recognition per-
formance. Fig. 5a shows the recognition accuracy versus the number
of training samples J curves, for different number of passes M , as
defined in Fig. 3. When J > 100, multi-pass learning outperforms
conventional single pass learning (M = 1) substantially. Fig. 5b
shows the corresponding standard deviation of recognition accuracy.
The stability of the recognition system is also improved using active
learning method, especially when J > 200. These results suggest
that with the help of active learning, our weather recognition system
can reliably label most of the images. With 20% of images manually
labeled, the system achieves 95% of accuracy. These results are sub-
stantially better than the reported performance in [4] [5], because we
leverage the latest developments in computer vision, namely, mul-
tiple kernel learning and active learning, which are both missing in
previous literatures.

It is worth mentioning that in Fig. 5, active learning has lower
accuracy as compared to conventional method when J is smaller
than a certain bound. This is due to the fact that when the number of
training samples is severely insufficient, the multi-pass active learn-
ing system cannot learn well in the beginning (the initial number of
training samples in active learning is just J/M ).

5. CONCLUSIONS

We consider the problem of assigning weather labels, i.e., sunny,
cloudy and overcast to panorama images. Given a certain human
input constraint, our proposed system can automatically label the
remaining images with a high confidence. We first propose a ro-
bust sky region extraction algorithm to filter out foreground inter-
ference. Then we use the state-of-the-art multiple kernel learning
framework to gather and select a combination of image features for
optimal discriminative power and low computational complexity. To
get a smarter choice of training set, we use active learning to build
a multi-pass learning/recognition system. The experimental results
show that this system achieves a high confidence.

6. ACKNOWLEDGEMENTS

This research was supported by the National Competence Center
in Research on Mobile Information and Communication Systems
(NCCR-MICS, http://www.mics.org), and the ERC Advanced Inves-
tigators Grant of European Union.

The authors also would like to thank Weijia Gan and Prof.
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