ANISOTROPICALLY FOVEATED NONLOCAL IMAGE DENOISING

Alessandro Foi

Department of Signal Processing
Tampere University of Technology, Finland
http://www.cs.tut.fi/~foi/
alessandro.foi@tut.fi

ABSTRACT

When our gaze fixates a point, the visual acuity is maximal at
the fixation point (imaged by the fovea, i.e. the central part
of the retina) and decreases rapidly towards the periphery of
the visual field. This phenomenon is known as foveated vi-
sion or foveated imaging. We recently investigated the role
of fovation in image filtering and we have shown that the
foveated patch distance, i.e. the Euclidean distance between
foveated patches, is a valuable feature for the assessment of
nonlocal self-similarity. Foveation operators apply spatially
variant blur, providing a compact multiscale representation of
each image patch. Here, we introduce anisotropic foveation
operators that embed directional point-spread functions, and
we show that the operators providing the highest denoising
quality are characterized by radial orientations. This result is
coherent with the orientation preference in the human visual
system.

Index Terms— Nonlocal Similarity, Image Denoising,
Foveation, Human Visual System.

1. INTRODUCTION

Patch-based nonlocal imaging methods rely on the assump-
tion that natural images contain a large number of mutually
similar patches at different locations. Patch similarity is typi-
cally assessed through the Euclidean distance of the pixel in-
tensities and therefore depends on the patch size: while large
patches guarantee stability with respect to degradations such
as noise, the mutual similarity that can be verified between
pairs of patches tends to reduce as the patch size grows. Thus,
a windowed Euclidean distance is commonly used to balance
these two conflicting aspects, assigning lower weights to pix-
els far from the patch center.

In [1], patch foveation was proposed as an alternative
to windowing in nonlocal imaging. Patch foveation is per-
formed through a foveation operator, which consists in a
spatially variant blur where the point-spread functions (PSFs)
have bandwidth decreasing with the spatial distance from the
patch center.
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Patch similarity can be assessed by means of the foveated
distance, i.e. the Euclidean distance of foveated patches, lead-
ing to the concept of foveated self-similarity. This approach
is inspired by the human visual system (HVS), which features
spatially variant properties [2, 3, 4, 5]: if we treat the center
of the patch as a fixation point, the foveated distance mimics
the inability of the HVS to perceive details at the periphery of
the center of attention.

In contrast with the conventional windowing, which
is only spatially selective and attenuates sharp details and
smooth areas in equal way, patch foveation provides selectiv-
ity in both space and frequency domain. Foveated patches,
in fact, embed pixels from fine-scale (the fixation point) to
coarse-scale (pixels at the patch periphery) representations of
patches, and such a space/frequency selectivity is achieved
by means of non-adaptive operators.

In [1] we presented an explicit construction of a foveation
operator yielding a foveated distance that, in terms of expec-
tation under zero mean, i.i.d., Gaussian noise, is guaranteed
to be equivalent to the distance induced by a given arbitrary
windowing kernel. However, in presence of structured dif-
ferences, such as those arising in the vicinity of edges, the
windowed and foveated distances are fundamentally distinct,
with the latter providing stronger response.

Therefore, the foveated self-similarity can be leveraged
in a number of imaging applications and, in particular, the
foveated patch distance was shown to be a valuable feature for
assessing the nonlocal self-similarity in image filtering. The
Foveated NL-means [1], which modifies the classical nonlo-
cal means denoising filter (NL-means) [6] by computing the
averaging weights based on the foveated patch distance in-
stead of the conventional windowed patch distance, leads to
a consistent improvement in the quality of the restored im-
ages according to both objective criteria and visual appear-
ance, particularly due to better contrast and sharpness.

We here introduce an anisotropic generalization of the
foveation operator, realized by means of directional PSFs.
Fig. 1 compares an isotropic foveation operator based on cir-
cular Gaussian PSFs versus newly introduced anisotropic op-
erators based on elliptical Gaussian PSFs. We show that the
foveated distance induced by a specific class of anisotropic
foveation operators provides further improvement in denois-
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Fig. 1. Illustration of an isotropic foveation operator (a), and four anisotropic foveation operators (b - ¢). Each operator is
displayed by the mosaic of the various PSFs that produce the pixels of a 5 x 5 foveated patch. The subimages in the mosaic
are placed at the corresponding position of the pixels in the foveated patch. Note the relative displacement of the PSFs. For the

sake of visualization, PSFs are displayed after intensity normalization.

ing performance with respect to the isotropic foveation oper-
ators. Remarkably, PSFs of anisotropic foveation operators
that most successfully exploit the nonlocal similarity in nat-
ural images follow radial directions, in complete agreement
with the orientation preference found in the HVS [7].

2. PRELIMINARIES
2.1. Observation Model
We consider noisy grayscale images z : X — R modeled as
2(z) =y(@)+n(x), v€X CZ? ()

where X C 7?2 is a regular pixel grid (the image domain),
y + X — R is the unknown original noise-free image, and
n: X — Ris i.i.d. Gaussian white noise, 77 (-) ~ N (0, 0%).

Noisy and noise-free patches centered at a pixel z € X

are extracted from z or in y, respectively, as
Vo () =y(ut+2z), wel,

where U C Z? is a neighborhood of the origin.

Z: (u) = 2z (u+2x),

2.2. Nonlocal Means (NL-means)

The purpose of any denoising algorithm is to provide an esti-
mate ¢ of the original image y. In the basic implementation
of NL-means [6] the denoised image ¢ consists in a weighted
average of potentially' all the image pixels, i.e.

§(a1) = Y w(@r,m) 2(z2), Vo €X,  (2)
ro€X

where {w(z1,x2)}s,ex is the set of adaptive weights that
characterize the pixel 1, which are positive and sum to one.
Each weight w(zy,z2) is determined by the similarity be-
tween the two patches z,,, and z,,,, as

d(zq,x9) d(aq,x)
w(x,x2) =€~ w2 [ > e T, 3)

rzeX

!n practice, mainly due to computational aspects, for each 21, only pixels
2 belonging to a limited search window around x1 are considered in (2).

where d (1, x2) is a distance measure between image patches
centered at z; and x2, and h > 0 is a filtering parameter
controlling the decay of the exponential function.

The distance d is defined as a windowed quadratic dis-
tance between patches, i.e.

d(zy,22) = ‘zzlx/l_{fzm\/l;Hz @)

being k a non-negative windowing kernel defined over U,
which adjust the contribution of each term depending on its
position with respect to the patch center. Typically, k is rota-
tional symmetric and the weights k(u) are determined by the
spatial distance from the center.

Equation (3) assigns larger weights to the terms z (-) in
(2) that correspond to pixels belonging to similar patches (i.e.
where the distance between patches d(zy,x2) is small), re-
gardless of their location within the image: thus, the NL-
means enforces the self-similarity of natural images, which
turns out to be an effective regularity prior for suppressing
the noise.

2.3. Foveated distance

In the Foveated NL-means [1], the windowed patch distance
d (x1,x2) in (4) is replaced by the foveated distance
2

" (21, 22) = | Flz, 21] = Flz wo]lls = [|250 — 250V,

1 X2

where F is a foveation operator that, given an image z and a
fixation point z, outputs a foveated patch zF°V

Flz,z] (u) = 2822 (u), ueU. (6)

In practice, F corresponds to a spatially variant blurring op-
erator with increasing blur (i.e. decreasing bandwidth) at pix-
els far from the center. Strictly speaking, zF°V is, compared
to z,, progressively blurrier as its argument |u| grows, Fig.
1(a) shows the PFSs yielding the spatially variant blur of the
foveation operators used in [1]. In the Foveated NL-means,
the weights {w Y (x1,z2)} are computed as in (3) replacing
d"V with d. Fig. 2 shows an example of foveated patch and

compares the weights w0V with w.
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Fig. 3. Denoising performance in terms of PSNR and SSIM of the Foveated NL-means when the patch distance is measured
by using anisotropic foveation operators. The best restoration performance can be achieved by anisotropic foveation operators
characterized by PSFs elongated along the meridian lines toward the patch center (i.e. € = 0). In contrast, operators with
tangential PSFs (i.e. = /2) are particularly ineffective and even lead to a performance loss with respect to the isotropic ones.
As a figure of merit, the PSNR/SSIM results obtained by the NL-means (using windowed distance) for these six inputs are,
respectively, 34.8/0.90, 29.2/0.79, 27.0/0.70, 24.9/0.60, 23.4/0.68, 20.9/0.58.
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Fig. 2. First column: a portion of z (MIT image sigma=50)
highlighting the 21x21 search neighborhood at = (dashed
blue line), and the 11x11 patch z, (solid red line) and, be-
low, the original image in the search neighborhood. The
remaining columns concern standard NL-means (windowed)
and Foveated NL-means using isotropic, radial, and tangen-
tial foveation operators. The top row shows the patches used
for computing weights, i.e., z, vk and zF%V, the middle and
bottom rows illustrate the corresponding weights and the de-
noised estimates in the search neighborhood, respectively.

2.4. Foveation Operator Requirements

The foveation operator F corresponding to a given window-
ing kernel k can be constructed in such a way to satisfy the
following four requirements [1].

Linearity. F is linear with respect to the input image.
Flat-field preservation.
patches; i.e.

F maps a flat image into flat

then

()

Ja >0 suchthat Ve >0 if z(x)=c Vz € X,
Flz,z] (u) = ac Yue U, Vz € X.

Central acuity. F is fully sharp at the center of the patch:
Ja>0:Flz,2](0) =az(z) VzeX.

Compatibility. The foveated distance d™Y can be used as a
straightforward replacement of the windowed distance d com-
puted from k in (3), without need of tuning parameters or
other adjustments. Compatibility is defined for the compar-
ison of perfectly identical patches, where we want d"°V and
d to coincide in mathematical expectation. Since y,, = y.,

implies E{d (x1,22)} = 20" ., k(u), we formulate the

compatibility requirement as follows: if yf% = yEOV then
2
B{d™ (a1,22)} = B{ 252 = 25|[>} = 202 k], . ®

In other words, (8) means that for any pair of identical noise-
free foveated patches F [y, 1] = F [y, x2], the expectation
of the foveated distance d"°V(z1, 23), evaluated on the cor-
responding noisy foveated patches as in (5), should coincide
with the expectation of the windowed distance (4) under com-
parable ideal conditions.

2.5. Construction of an Isotropic Foveation Operator

The construction of a foveation operator F that satisfies the
above requirements amounts to adjusting the scaling and
spread of the blur PSFs in such a way that their /' norm is
constant and their squared ¢? norms equal the corresponding
values of the windowing kernel k. For the particular case
of circular-symmetric Gaussian PSFs (see Fig. 1(a)), the
isotropic operator is defined by [1]

Flz,x1] (u) = Zz(w) Vuy) (T—21—1), Vuel,
zeX

()

where

2rk(u z|?
~ 2k(u) —
vsduy) (2) = VEO) 3y = Zigbe” O



U (k(w)) being the bivariate Gaussian probability density func-
tion (p.d.f.) with mean zero and diagonal covariance matrix

Se(quy) = Is?(k(w)), and s(k(u)) = /7 150} . The £* norm

and the squared 2 norm of Vs(K(u)) aTe, respectively,

ool = o= V&), [[oaan]ly = k(w).  (10)
Such foveation is said to be isotropic because all blur PSFs are
circular symmetric and attenuate image features regardless of
their orientation.

3. ANISOTROPIC FOVEATION OPERATORS

Anisotropic foveation operators generalize the isotropic ones
described in Section 2.5 by utilizing, in place of the circular-
symmetric Gaussian p.d.f. (), an elliptical Gaussian
p.d.f. whose covariance matrix depends not only on < (k(u)),
but also on w itself, on a parameter p >0 which determines the
elongation of the p.d.f.,, and on an angular-offset parameter
6 which controls the orientation of the axes of the elliptical
p.d.f. Specifically, we denote by U¢iqu)),p,0,. the elliptical
Gaussian p.d.f. whose covariance matrix has the form

St pou =S~ (K(u)) Rzuro Dy RY., g,

where the matrix D ,= [p 0

0 1/p
__|cos (ZLu+60) —sin(Zu+0)
R4u+97|:sin(4u+9)

cos (Lu+0)
gle Zu + 6; in the special case u = 0, for which Zu can-
not be defined, we impose p =1, thus reducing to a circular-

symmetric PSF. Overall, the foveation operator (9) becomes

Fp,g [Z, 1’1] (u) :Z z(x) k(O) {k(k(u)),p,&,u (ZE*IEl *u) .
reX

When 0 =0 and p > 1, the major axes of the PSFs are directed
along the meridian lines toward the patch center, yielding ra-
dial foveation operators. Conversely, if @ =7 /2 and p> 1, it is
the minor axes of the PSFs that are directed towards the patch
center and we obtain tangential foveation operators. Due to
symmetry, the operators 7, 0, F1/p 647/24nx a0d Fp otnr
coincide for any n € Z. The larger max {p, 1/p} is, the more
elongated the PSFs are along their major axis; when p =1,
F,,6 coincides with the isotropic foveation operator (9). Fig.
1 shows the PSFs that constitute a few anisotropic foveation
operators corresponding to the same k for different values of
pand 6.

] determines the elongation and

] is a rotation matrix of an-

3.1. The Four Constraints

The anisotropic foveation operators F, o satisfy the four con-
straints set in Section 2.4 for any combination p > 0 and
0 € (—n/2,7/2]. The proof, which we omit because of
length limitation, is rather straightforward and boils down to
the fact that the norms (10) are invariant with respect to ellip-
tical deformation of the probability density functions v (y(.))
as long as the covariance matrix has always unitary determi-
nant, which is ensured by the definition of D,.

4. EXPERIMENTS

We assess the effectiveness of anisotropic foveation by de-
noising natural test images corrupted by additive Gaussian
noise using Foveated NL-means. In particular, we consider
operators F, o with various elongation and orientation com-
binations, varying p € [1, 8] and 6 € [0, 7/2]. Due to the low
chirality of natural images, operators F, 9 and F, _g yield
practically identical results, even for 6 € (0, 7/2). Denoising
performance for different levels of noise standard deviation o
are measured in terms of both PSNR and MSSIM [8]. Fig. 3
reports a representative portion of the obtained results.

Both PSNR and MSSIM results show that radial aniso-
tropic patch foveation (i.e. 8 =0, p > 1) improves the de-
noising performance with respect to the isotropic foveation
(p=1) or the anisotropic tangential foveation (6 = /2, p >
1). It emerges that radial foveation operators are more effec-
tive at assessing the nonlocal similarity in natural images. In
particular, the performance gap between radial and isotropic
foveation is larger on images characterized by marked edges,
such as MIT.

The performance gap between radial and isotropic fovea-
tion is less substantial than the improvement achievable when
introducing isotropic foveation in the classical, windowing-
based, NL-means. Nevertheless, such improvement is par-
ticularly meaningful as it highlights that the radial foveation
yields a stronger prior for measuring nonlocal similarity in
image denoising. This result can be justified through argu-
ments similar to those leading to the anisotropic NL-means
[9], where it is shown that the by orienting and elongating
the patch U along image edges it is possible to improve the
noise suppression. As shown in Fig. 2, radial foveation pre-
serves the substantial edge structure, since pixels are blurred
along the edge rather than across the edge. The correspond-
ing weights are in fact more precisely located along the edge
direction. Such edge preservation is coherent with the results
from [9]; in contrast, tangential foveation operators blur the
patch across edges and result in a performance loss for all the
considered images.

5. CONCLUSIONS

In this work we introduce anisotropic foveation operators
and we show that assessing patch similarity using radial
foveation is a more effective regularity assumption than using
the isotropic foveation or the windowing conventionally used
in NL-means. In terms of computational complexity, foveated
NL-means introduces a negligible overhead, since foveated
patches can be preliminary computed from the convolution
of z against the PSFs 0¢(i(y)),p,0,u(2) of the corresponding
foveation operator.

More interestingly, this radial PSF layout agrees with the
orientation preference found at various levels of the human
visual system [7],[10].
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