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ABSTRACT

Multimodal retinal images (RI) are extensively used for analysing
various eye diseases and conditions such as myopia and diabetic
retinopathy. The incorporation of either two or more RI modalities
provides complementary structure information in the presence of
non-uniform illumination and low-contrast homogeneous regions.
It also presents significant challenges for retinal image registration
(RIR). This paper investigates how the Expectation Maximization for
Principal Component Analysis with Mutual Information (EMPCA-
MI) algorithm can effectively achieve multimodal RIR. This iterative
hybrid-based similarity measure combines spatial features with mu-
tual information to provide enhanced registration without recourse
to either segmentation or feature extraction. Experimental results
for clinical multimodal RI datasets comprising colour fundus and
scanning laser ophthalmoscope images confirm EMPCA-MI is able
to consistently afford superior numerical and qualitative registration
performance compared with existing RIR techniques, such as the
bifurcation structures method.

Index Terms— Image registration, ophthalmological image
processing, principal component analysis, mutual information,
expectation-maximization algorithms.

1. INTRODUCTION

Image registration is a vital procedure in many computer vision
and image processing applications [1], [2]. In medical imaging for
example, images firstly need to be registered before image fusion
can occur to facilitate disease diagnosis and treatment planning [3].
Multimodal retinal images (RI) like colour fundus and scanning
laser ophthalmoscope (SLO) have specific clinical applications for
identifying eye conditions and diseases like myopia, glaucoma and
diabetic retinopathy [4], [5]. The modalities provide complementary
information with the colour fundus images showing the boundary of
the optic nerve head, while the near infrared SLO images reveal deep
layer reflectivity and surface topography of the optic nerve head and
retina [5].

Retinal image registration (RIR) seeks to align the vessel struc-
tures of the retina in these images, to assist in ophthalmology, espe-
cially in the tracking and analysis of the advancement of various eye
diseases [6]. Multimodal RIR is especially challenging compared
to single modality RIR because while providing complementary

details on retina structure, the images can have different sizes and
resolutions, exhibit different reflectivity levels in their non-uniform
contrasts and have large homogeneous non-vascular regions. The
quality of a particular image modality can be further compromised
by degradations in various pathologies [4].

RIR can be categorised into feature, intensity and hybrid based
techniques [6]. Feature-based approaches use extracted vessel struc-
ture and landmark points from the RI, while intensity techniques
focus solely on pixel intensity information. Using features for RIR
is analogous to manual registration, as key structures like optic
disk [7] and vascular structural features [8], [9] are extracted from
RI. Bifurcation point matching approaches such as dual-bootstrap
iterative closest point [10] and its variant [11] accomplish registra-
tion by using vascular features to grow a bootstrap region. While
these methods are computationally fast, their performance is very
dependent on the segmentation quality and degree of overlap of the
extracted features.

Vascular bifurcation structures (BS) is a recent method for
multimodal RIR [12] which has been shown to perform satisfactorily
for linear and affine transformation models. RIR-BS defines a master
bifurcation point with up to three connected neighbours, with each
structure vector having both a normalised branch angle and length,
which estimates the transformation for image alignment.

In contrast, intensity-based techniques use a similarity measure
(SM) such as cross correlation, phase correlation [13] or mutual
information (MI) [14], [15] to align the RI by applying an optimiza-
tion strategy to maximise the SM within the transformation search
space. MI has been widely adopted in multimodal medical image
registration of various parts of the human anatomy including the
brain, lungs and eyes [1]. It establishes a statistical relationship
between the intensity values of images, though the innately chal-
lenging characteristics of RI can lead to a rapid degradation in RIR
performance when MI is applied directly [16].

Hybrid approaches [1] combine different aspects of the aforesaid
feature and intensity methods, as for example, in using extracted
vascular structures [17] together with spatial information in regional
MI [18] and feature neighbourhood MI [19], [20]. These techniques
use covariance matrices to reduce the data complexity [18] instead
of high-dimensional histograms, though as the spatial information
increases, so commensurately does the corresponding computational
cost. EMPCA-MI [21], [22] is a recent hybrid-based algorithm
which has been developed for efficiently registering brain computed
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Fig. 1. Example of EMPCA-MI computation using a multimodal RI pair of size 10 × 10 pixels (with P=1 and r=1).

tomography and magnetic resonance images by combining spatial
information with MI. It has subsequently been successfully deployed
in RIR, though only for single modal images [23]. EMPCA-MI
exhibits superior robustness in image registration performance in the
presence of both non-uniform intensity and noise, and this provided
the impetus to appraise its suitability to the very challenging multi-
modal RIR domain.

This paper analyses the performance of the hybrid-based
EMPCA-MI similarity measure [21] for multimodal RI datasets.
The corresponding RIR performance has been compared with the
recently proposed feature-based bifurcation structures method, with
both quantitative and perceptual results consistently validating the
superior registration performance of the EMPCA-MI algorithm.

The remainder of the paper is organised as follows: Section 2
presents the EMPCA-MI-based multimodal RIR framework, while
Section 3 details the experimental set-up and analyses the registra-
tion performance. Finally, some concluding comments are provided
in Section 4.

2. PROPOSED REGISTRATION FRAMEWORK

2.1. Principles of Multimodal RIR

Multimodal RIR consists of aligning a reference image IR of one
modality with a sensed image IS of a different modality, in a four-
stage process [2]: i) transforming the coordinates of IS in a known
reference space; ii) generating a new interpolated image I?S in the
reference space; iii) comparing I?S with the reference image IR using
a predefined SM; and iv) optimizing transformation µ to achieve the
best alignment at µreg . This multi-stage process can be generalised
as a maximisation problem:

µreg = arg max
µ

SM(IR, µ(IS)) (1)

where µreg gives the best registration parameter settings.

2.2. EMPCA-MI as a Similarity Measure

EMPCA-MI [21], [22] is a recently introduced SM for image
registration that efficiently incorporates spatial information together
with MI without incurring high computational overheads. As
illustrated in the example in Fig. 1, it comprises three steps which
involve pre-processing (image information rearrangement), followed
by EMPCA [24] and MI [21] calculations. Note the block colours
in Fig. 1 represent the pixels for pre-processing and not actual pixel
values. The full EMPCA-MI model is detailed in Algorithm 1. IR
and IS are the respective duo-modal RI which are pre-processed in
Step I (Lines 1-5 in Algorithm 1) into vector forms QR and QS
for a given neighbourhood radius r, so that the spatial and intensity
information is preserved. The first P principal components XR and
XS of the respective reference and sensed images are then iteratively
computed by EMPCA along dimension d in Step II (Line 6), instead
of solving the covariance matrix. The final MI value is calculated
between XR and XS in Step III (Line 7), with a higher MI value
reflecting that IR and IS are better aligned.

The EMPCA-MI framework in [21] considered only the first
principal component, i.e., P=1 as this represents the direction of
the highest variance and the most dominant feature in a particular
region. In this paper, the iterative nature of the EMPCA-MI model
is exploited in two RIR case studies where additional principal com-
ponents are mandated to improve the RIR quality. These scenarios
represent a major challenge for multimodal RIR, because the images
are characterised by large homogeneous regions. This means using
P=1 for RIR does not sufficiently represent the overall variance of
the image information, with the corollary being higher registration
errors. By including supplementary principal components i.e., P=2,
EMPCA-MI addresses this limitation. For instance, the second
principal component has the highest variance in the same region,
subject to it being orthogonal to the first principal component, so the
effect is to enhance the overall RIR process as more accurate image



Image Scenario 1 Scenario 2 Scenario 3
Pair µgrd=(0, 0, 60◦, 1) µgrd=(10, 10, 30◦, 2) µgrd=(8, 7, 45◦, 0.8)
No.

RIR-BS [12]
EMPCA-MI

RIR-BS [12]
EMPCA-MI (r=1)

RIR-BS [12]
EMPCA-MI (r=1)

P=1, r=1 P P
1 0, 0, 0.02, 0 0, 0, 0.01, 0 0, 0, 0.048, 0.005 1 0, 0, 0.035, 0.002 0, 0, 0.058, 0.006 1 0, 0, 0.048, 0.008
2 0, 0, 0.24, 0 0, 0, 0.09, 0 0, 0, 0.163, 0.013 1 0, 0, 0.075, 0.009 0, 0, 0.195, 0.018 1 0, 0, 0.127, 0.016
3 0, 0, 0.62, 0 0, 0, 0.25, 0 0, 0, 0.057, 0.043 1 0, 0, 0.022, 0.032 0, 0, 1.049, 0.085 1 0, 0, 1.023, 0.064
4a

0, 0, 1.20, 0 0, 0, 0.70, 0 0, 0, 1.260, 0.071
1 0, 0, 1.920, 0.060

0, 0, 0.340, 0.022
1 0, 0, 0.380, 0.025

4b 2 0, 0, 1.219, 0.053 2 0, 0, 0.218, 0.016
5 0, 0, 0.11, 0 0, 0, 0.08, 0 0, 0, 0.760, 0.009 1 0, 0, 0.590, 0.004 0, 0, 0.880, 0.021 1 0, 0, 0.670, 0.014

Table 1. Registration errors expressed as ∆tx, ∆ty , ∆θ, ∆S of the similarity transformation for multimodal RI pairs, with µgrd being the
ground truth. Image Pair 4a and 4b are the same RI Image Pair, but with EMPCA-MI using P=1 and P=2 respectively.

information is available in both the MI computation and optimization
steps of Algorithm 1 (Lines 6 and 7). This issue will be elaborated
further in Section 3.1.

2.3. Transformation and other registration settings

Multimodal RI acquisition intrinsically introduces distortion, which
is normally modelled by a similarity transformation [19], [20]. This
special form of the global affine transform [25], which represents RI
distortion as either i) changes in magnification to reflect that different
equipment has been used, or ii) motion in the direction of the optical
axis modelled as a uniform scaling S allied with (x-y) translational
and rotational θ) components, to reflect eye and/or camera motion
[26]. The notation adopted to represent the four key registration
parameters is µ (tx, ty , θ, S) with the tx translation, the ty translation,
θ rotation and scaling factor S of transform µ. To automatically
determine these parameters, bicubic interpolation is used for the RI
transformation and Powell’s multidimensional direction set method
along with Brent optimization [27], since it exhibits fast and accurate
local search performance and is well-suited to RIR [2].

Algorithm 1: EMPCA-MI for RIR
Inputs: Multimodal RI IR and IS with spatial resolution of m × n
pixels; r− neighbourhood radius. P− number of principal compo-
nents.
Variables: d− dimensional space; N− total no of pixels; i, j,
k− indexes; QR, QS− rearranged matrices for IR and IS ; XR,
XS− principal components using EMPCA [24] for IR and IS .
Output: EMPCA-MI value

1: Initialise d = (2r + 1)2, N = (m − 2r)(n − 2r) and k = 1;
2: While k < N with 1 + r ≤ i ≤ m− r, 1 + r ≤ j ≤ n− r

3: Define QR([1...d])(k) = IR([(i−r)...(i+r)])([(j−r)...(j+r)])
4: k = k + 1

5: REPEAT Steps 2 to 4 for IS to produce QS
6: Calculate XR and XS using QR and QR for given P [24]
7: Calculate MI(XR, XS) [21]
8: STOP

3. EXPERIMENTAL SET-UP AND RESULTS

To rigorously evaluate the performance of EMPCA-MI for RIR, a
multimodal clinical dataset consisting of ten pairs of colour fundus

and gray-scale SLO images was used [13], [28]. Each colour
fundus image had a spatial resolution of 3888 × 2592 pixels and
was acquired from a Canon CR-1, while the SLO images had a
resolution of 768 × 768 pixels and were obtained from a SLO
system (Spectralis, Heidelberg Engineering). Each RI modality
contained non-uniform illumination, low contrast and differently
sized homogeneous regions with varying reflectivity levels to ac-
centuate the registration challenge. To establish the ground truth,
since one was not available for this clinical dataset, selected images
were misregistered by a known random transformation µgrd, with
the original images considered as the sensed images IS . RIR was
performed on only the green channel of the colour fundus images,
since it has the highest contrast compared with the other channels,
which are often saturated and contain acquisition noise [15], [17].
The tolerance thresholds for the Powell and Brent optimization were
set to 10−5 and 10−3 respectively as in [2], [27] with the maximum
permitted number of iterations being 200. RIR-BS [12] was chosen
as a performance comparator in the experiments as it represents one
of the most promising contemporary feature-based RIR techniques.

3.1. Results Discussion

To analyse the registration performance, three diverse scenarios with
randomly generated µgrd were considered. Scenario 1 is a straight-
forward registration case, with only the rotation (θ=60◦) parameter
varied with the other three parameters being fixed, while Scenarios
2 and 3 reflect more challenging cases with all four registration
parameters being varied. In these two latter scenarios, the value of
S reflects that the RI have been acquired with different equipment
magnifications, while the tx and ty translations are pragmatically
kept low as these motions are generally minimal during the image
acquisition process [10]. While RIR using both EMPCA-MI and
RIR-BS was undertaken for all ten Image Pairs, due to space
limitations Table 1 only displays the comparative registration errors
for the first five pairs in Scenarios 1, 2 and 3.

The results conclusively reveal that for all Image Pairs EMPCA-
MI provided consistently superior and more robust RIR performance
compared with RIR-BS for each Scenario, with the notable excep-
tion of Image Pair 4a in Scenarios 2 and 3. Image Pair 4 is the
most challenging pair in the dataset as it has pathology alongside low
contrast and very large homogeneous regions, which compromises



Fig. 2. Checkerboard overlay [2] illustration for Image Pair 4b in Scenario 3 with three zoomed areas for (a) EMPCA-MI and (b) RIR-BS;
(c) zoomed-in vascular structure details for three highlighted areas in both pairs.

EMPCA-MI performance when only one principal component is
used. In contrast, since the BS method uses segmentation, RIR-
BS quality is influenced much more by low contrast rather than by
the presence of large homogeneous regions in the RI. The versatility
of the EMPCA-MI model however, is illustrated when in order to
secure improved RIR accuracy, the number of principal components
is iteratively increased. This is evinced for Image Pair 4b in both
Scenarios 2 and 3, where P=2 is used so the overall variance of
the RI is now represented by two orthogonal components. The
corresponding results confirm this, with the EMPCA-MI rotational
(∆θ) and scaling (∆S) registration errors for Image Pair 4b being
reduced by more than 36% and 11% respectively in comparison with
Image Pair 4a for Scenario 2, and by 43% and 36% for Scenario 3.
Note the neighbourhood radius r=1 has not been increased because
due to the large homogeneities in this RI pair, using a larger r
provides no benefit in terms of RIR performance.

To appreciate the corresponding perceptual RIR performance,
Fig. 2 shows an example of the RIR results for Image Pair 4b,
using the checkerboard overlaying method [2], with IR and IS being
displayed in colour and gray-scale respectively. Some of the vascular
structure areas in the resulting RIR for EMPCA-MI and RIR-BS are
respectively highlighted in Fig. 2(a) and (b). Fig. 2(c) provides

zoomed-in versions for three specific areas in this Image Pair, where
the enhanced continuity in the vessel structures of the EMPCA-MI
registration is clearly evident in boxes 1, 2 and 3 compared with
the corresponding RIR-BS registered areas. These subjective results
allied with the numerical results in Table 1 corroborate both the
superior performance and flexibility of the EMPCA-MI algorithm
in registering multimodal RI.

4. CONCLUSION

This paper has analysed the performance of the hybrid-based expec-
tation maximization for principal component analysis with mutual
information (EMPCA-MI) algorithm in providing enhanced multi-
modal RIR, by combining spatial features with mutual information.
Multimodal RIR is a very challenging problem due to the latent
characteristics of low contrast, non-uniform illumination, large
homogeneous regions and variable reflectivity levels in the different
modalities. Both quantitative and subjective results for multimodal
clinical datasets confirm the versatility of the EMPCA-MI model in
being able to iteratively increase the number of principal components
to furnish lower registration errors and superior RIR quality com-
pared with the existing feature-based bifurcation structures method.
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