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ABSTRACT
We present a method to automatically detect dust and scratches
on photographic material, in particular silver halide film,
where traditional methods for detecting and removing defects
fail. The film is digitized using a novel setup involving cross-
polarization and dark-field illumination in a cardinal light
configuration, which compresses the signal and highlights the
parts that are due to defects in the film. Applying a princi-
pal component analysis (PCA) on the four cardinal images
allows us to further separate the signal part of the film from
the defects. Information from all four principal components
is combined to produce a surface defect mask, which can be
used as input to inpainting methods to remove the defects.
Our method is able to detect most of the dust and scratches
while keeping false-detections low.

Index Terms— Dust and scratch detection, Principal
Component Analysis, Adaptive thresholding.

1. INTRODUCTION

Silver-halide based photographic material is not permanent,
which is why there is a great interest in digitizing these visual
documents. Manual restoration of dust and scratches present
on film is both time-consuming and expensive. Also, due to
the vast number of films in archives that need to be restored,
an automatic framework is needed. We propose a method to
automatically detect surface defects (dust and scratches) on
any kind of transparent photographic material, in particular
on black and white film. This is achieved by a, for this appli-
cation, novel physical setup that uses cross-polarization and
dark-field illumination [1], combined with subsequent image
processing to create the defect mask.
Several methods have been proposed to detect and remove
surface defects on film. On the acquisition side, the most
effective solution is called infrared cleaning [2]. This method
takes a “normal” visible image using white light, and one
in the Near-Infrared (NIR) using an NIR light source. The
color dyes present in color film are transparent to NIR, and
hence defects are visible in the NIR and can subsequently be
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removed. This method works well for color transparencies
with small defects, but does not work for black and white
(silver halide) film, since the silver grains are not transparent
in the NIR.
WetGate [3] is an older method where at the time of exposure,
the film is coated with a liquid that has a suitable refractive
index to cover scratches on the film surface. It involves the
use of toxic chemicals, and dust and other particles are not
removed. The film also needs to be cleaned afterwards.
In [4], a semi-automatic framework for detecting and remov-
ing dust and scratches from any type of film is proposed
by using diffuse light to illuminate the film. Their dirt and
scratch correction option (D/SCO) generates a map of sur-
face and deeper defects depending on user-defined, image-
dependent parameters.
Various methods have been proposed to restore film digitized
by conventional scanning. In the case of moving image film,
several methods exploit the temporal correlation between
consecutive frames to detect (and remove) defects [5–7].
Spatio-temporal approaches tend to have problems with
movements in the scene, as the movement needs to be com-
pensated for. Methods using single still images simplify the
problem by focusing on specific defect orientations such as
vertical scratches [8], and therefore do not generalize well.
Our method combines a novel film acquisition setup with
image processing, and can be used to detect defects in both
still and moving images. In particular, our fully automatic
method works for the detection of both dust and scratches on
black and white film, irrespective of the defect size and orien-
tation. We acquire four cardinal images using a combination
of cross-polarization and dark-field illumination, where the
only difference is the position of the light source with respect
to the film. In these cardinal images, defects are highlighted,
and the content of the film is suppressed. We use these images
to build both a coarse and a refined defect map, which can be
used for subsequent image restoration techniques.
The rest of the paper is organized as follows. In Section 2, we
explain the experimental setup. We then present our workflow
to automatically detect defects in Section 3. Qualitative and
quantitative results are presented in Section 4, and Section 5
concludes the article.



2. EXPERIMENTAL SETUP

We use the setup first presented by Trumpy et al. [9], and
acquire a direct light image and images in which the defects
are emphasized. Fig. 1 shows a schematic of the setup.

Fig. 1. Setup to capture the four cardinal images.

We use cross-polarization by using two orthogonally ori-
ented polarizing filters (one on the light source, one on the
lens of the camera). While the silver grains of the film do
not perturb the polarization of light, the surface defects do.
Therefore, the signal related to the silver emulsion is sup-
pressed by the orthogonally polarized filter on the lens, while
the signal related to the defects is maintained. The dark-field
method suppresses the signal related to the silver emulsion by
excluding the non-scattered beam from the image. The sil-
ver grains in the emulsion of the film are randomly dispersed,
and their interaction with light is isotropic. The scattered light
therefore produces a similar signal irrespective of the position
of the light source. Dust and scratches on the film surface,
on the other hand, produce reflections and shadows, which
strongly depend on the light direction. We therefore use a
cardinal setup with four light directions (i.e., North, South,
East, and West), where the angle θ between the direction of
the illumination and the optical axis (see Figure 1) is the same.
In our setup, we use θ = 45◦. We also take one direct light
image without polarization, where the light source is placed
in the optical axis.

2.1. Image Model

In the following, we denote aij the value of a pixel at loca-
tion (i, j), where i ∈ [1,m] and j ∈ [1, n], of a matrix A
of m rows and n columns. We acquire four cardinal images
C(k), k ∈ {1,2,3,4} and a direct light image L. The direct
light image pixel values are modelled as follows:

lij = (1− dij)sij + dijwij + σij , (1)

where sij is the actual signal part in the film, dij is a pixel of
the binary mask of defects D (dust and scratches) of weight
wij , and σ is camera noise.The pixel values c(k)ij of the four

cardinal images C(k) are modelled in a similar way:

c
(k)
ij = (α · ζ(k))(1− dij)sij + κdijwij + γσij , (2)

where α � 1, κ ≥ 1, and γ > 1 are attenuation and ampli-
fication factors due to the cross-polarized dark field illumina-
tion. ζ(k) < 1 accounts for shadows cast by the defects on
the film surface, and is the main difference between the four
cardinal images.

3. DUST AND SCRATCH DETECTION ALGORITHM

Fig. 2 gives an overview of the proposed defect detection
pipeline.

Fig. 2. Proposed pipeline for dust and scratch detection.

We start by registering all images using SIFT [10] with
RANSAC [11]. We then apply a bilateral filter [12] on the
four cardinal images C(k) to remove the noise σ, while at the
same time conserving the (larger) defect parts. The filtered
C(k) are the input to a principal component analysis (PCA).
We compute first a coarse defect map by only considering the
first principal component E(1). While we are able to detect
most major defects, we miss thin defects that are below the
signal to noise ratio (SNR) of the cardinal images. We thus
propose a refinement step where we use the (less noisy) di-
rect light image combined with the second to fourth principal
components to add thin defects.

3.1. Coarse Defect Map

The output of the PCA on the four cardinal images (C(1)-C(4))
are the four principal components (E(1)-E(4)), where E(1)



expresses the spatial variability of the image, and (E(2)-E(4))
emphasize the differences due to the defects on the film sur-
face (see Fig. 2). Big defects are bright in all four images and
therefore do not change, and hence are contained in the first
principal component. Fig. 3 shows an example of E(1), as
well as its corresponding histogram.

(a) Direct light image L. (b) E(1)

(c) Histogram of E(1) (d) Coarse defect map Dcoarse.

Fig. 3. Example of (a) direct light image L, (b) first principal
component of the cardinal images, (c) the histogram of E(1),
and (d) the coarse defect map. True positives are green, false
positives blue, false negatives red, and true negatives black.

The film signal values are compressed, while most defects
are highlighted in the bright parts. To compute the defect
map, we threshold the image based on the histogram (see Fig.
3(c)). We set Thigh (Tlow) to be the largest (lowest) location
where the absolute difference between consecutive histogram
bins is larger than an image-size dependant value. The coarse
defect map is computed as follows:

dcoarse
ij =

{
1 if e(1)ij > Thigh

0 otherwise
(3)

Fig. 3(d) shows a (color-coded) coarse defect map. While
most of the major defects are correctly detected, as well as
almost no false positives, thin defects are missing.

3.2. Thin Defect Map

Due to the considerable amount of noise introduced by the
dark field illumination and subsequent long exposure, thin de-
fects that are below the SNR will not be completely detected.
Many defects have a rather elongated, continuous structure,
which is partially lost in the cardinal images. They are, how-
ever, still present in the much less noisy direct light image
L. In the end, we want to detect (and remove) the defects of
the direct light image, and hence we also need to detect those
thin defects. Finding a threshold that separates the defects

from the image parts in the direct light image L is difficult
since bright parts in the film are hardly distinguishable from
scratches. By combining the direct light image with the in-
formation contained in the second to fourth principal compo-
nents, we can derive a detailed defect map Dthin to augment
our previously calculated coarse defect map Dcoarse.
We first apply the function rij = log(lij) − log(g(lij)) to
the direct light image L in order to extract the high-frequency
components of L. g(x) is a low-pass Gaussian filter. We
threshold the resulting image R at Tlow and only consider de-
fects that are not already contained in Dcoarse to extract the
thin defect candidate map T :

tij =

{
1 if rij < Tlow

∧
dcoarse
ij = 0

0 otherwise
. (4)

Note that in T , large homogeneous parts are removed from
the set of potential defects, but some high-frequency parts
that are not defects still remain. We use E(2) − E(4) to
compute a defect probability map to decide which parts of
T are defects. In order to compute from principal compo-
nents E(k), k ∈ {2, 3, 4} a defect probability map, we first fit
a Gaussian curve to the histograms of the eigenvectors. Let us
denote the function corresponding to eigenvector k as gk(x).
To obtain the defect probability functions, we compute:

fk(x) = 1− gk(x)

max(gk(x))
, for k ∈ {2, 3, 4}. (5)

As mentioned before, the E(2), E(3), and E(4) all contain
partial information of the whole defect map. We compute:

p
(k)
ij = fk(e

(k)
ij ), for k ∈ {2, 3, 4}. (6)

Since the principal components are orthogonal, we multi-
ply the individual probabilities in order to get the final defect
probability map P defect:

pdefect
ij = p

(2)
ij · p

(3)
ij · p

(4)
ij . (7)

We use P defect to reduce the false-positives of T . We perform
a connected component analysis (CCA) with a 4-connected
neighborhood of T . Let us denote τi, i ∈ {1, ...,N} the N
connected components resulting from the CCA. Algorithm 1
shows how the thin defect map Dthin is computed.

Algorithm 1 Selection of thin defects
for i = 1→ N do

if
∑
P (τi)∑
τi
≥ ε then

Dthin(τi)← 1
else

Dthin(τi)← 0
end if

end for



(a) TP = 83.7% (b) TP = 90.7% (c) TP = 88.6% (d) TP = 87.6%
Fig. 4. Final defect maps of four silver halide transparencies (crops). TP = green, FP = blue, FN = red, TN = black.

ε denotes a threshold which signifies the percentage of pix-
els that need to be in P defect corresponding to a specific con-
nected component τi so that the component is counted as de-
fect. In our experiments, we set ε = 0.01.

3.3. Final Defect Map

The last step is to combine the coarse defect map Dcoarse (see
Section 3.1) with the thin defect map Dthin explained in Sec-
tion 3.2. The value of each pixel of the final defect map is
computed as:

dfinal
ij = max(dcoarse

ij + dthin
ij , 1.0). (8)

4. RESULTS AND DISCUSSION

We created ground truth masks for 8 direct light images con-
taining a variety of defects. Most prominent are scratches of
various sizes, as well as dust particles. We compare the out-
put of our method with the ground truth on a pixel-by-pixel
basis. Note that in general, the amount of defects is small
compared to the signal. This implies that we can get a very
high accuracy by simply labelling everything as not being a
defect. What we are ultimately interested in is to have the
highest true positive rate with as few false positives as pos-
sible. The Matthews correlation coefficient (MCC) [13] can
be used as a balanced measure if the two classes have very
different sizes. The value of the MCC is between {−1, 1},
where the larger values indicate better prediction. Table 1

Table 1. Quantitative results (8 images)
TP σTP MCC σMCC Acc σAcc

Dcoarse 59.2% 18.6 0.54 0.23 95.8% 2.9
Dfinal 88.1% 6.2 0.63 0.23 94.9% 3.8

shows the detected true positive rate (TP), MCC, and overall
classification accuracy TP+TN

TP+TN+FP+FN (Acc), as well as the
respective standard deviations σ, for both the coarse and the

final defect map. We can see that on average, there is almost a
30% improvement of detected defects from the coarse to the
final defect map. While the overall accuracy is a bit lower
in Dfinal, the MCC indicates that the overall prediction qual-
ity is better. Fig. 4 shows the results on four different film
crops with various types and amounts of surface defects. We
are able to detect most of the defects, while keeping the false
positive rate reasonably low. Most FP surround correctly de-
tected defects, as can be seen in Figures 4(a) and (c). As these
maps are the input to subsequent restoration techniques, such
as inpainting, these false positives should not interfere with
performance.
Our method fails if T contains a connected component that is
partly a true defect, and partly part of an edge in the film. One
example of this can be seen in Fig. 4(d), where the sharp edge
of the resolution target overlaps with the scratch, and hence
is falsely detected as scratch. Note that since we remove ev-
erything covered by Dcoarse, the other lines of the resolution
target are removed by the selection of thin defects Algorithm,
as they are not connected to anything scratch related. We also
tend to miss defects that are almost indistinguishable in terms
of intensity values to the film signal. However, such defects
are hardly visible, and might not have to be restored.

5. CONCLUSION AND FUTURE WORK

We present a new way of detecting dust and scratches in silver
halide film by using a novel setup involving cross-polarized
light and dark field illumination in a cardinal setup. We pro-
pose both a coarse and a finer defect map, and show both
quantitatively and qualitatively how well our framework per-
forms. These defect maps together with the direct light image
L can then be the input to subsequent restoration algorithms.
Future work includes increasing the ground truth set and in-
vestigating ways to further reduce false positives. We are also
building a new acquisition setup with more light source posi-
tions, which should result in better defect probability maps.
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