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Abstract

We are developing a dietary assessment system to automatically identify and quantify foods and 

beverages consumed by analyzing meal images captured with a mobile device. After food items 

are segmented and identified, accurately estimating the volume of the food in the image is 

important for determining the nutrient content of the food. In this paper, we proposed a novel food 

portion size estimation method for rigid food items using a single image. First, we create a 3D 

graphical model during the training step using 3D reconstruction from multiple views. Then, for 

each food image, we determine the translation and elevation parameters of each of the food items, 

which are relative to the camera coordinate through camera calibration. Using these geometric 

parameters we project the pre-built 3D model of each food item back to the image plane. 

Subsequently, the remaining degrees-of-freedom (DOF) for the final pose is estimated by image 

similarity measure. The experimental results of our volume estimation method for four food 

categories validate the accuracy and reliability of our model-based approach.

Index Terms
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1. INTRODUCTION

Accurately measuring dietary intake is considered to be an open research problem in the 

nutrition and health fields. Traditional dietary assessment is composed of written and orally 

reported methods that are time consuming and tedious, which makes them not widely 

acceptable or feasible for everyday monitoring. Recently, a number of dietary assessment 

systems utilizing images /videos of eating occasions have been proposed [1, 2, 3, 4]. These 

systems provide unique mechanisms for improving the accuracy and reliability of dietary 

assessment. Most of these approaches involve manual or automatic food identification. 

Portion size of the food items is then estimated through volume estimation. Once food 

portion size is estimated, the energy and nutrient information of food eaten is obtained. We 

are developing a system, known as the mobile device food record (mdFR), to automatically 
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identify and quantify foods and beverages consumed by analyzing a single meal image 

captured with a handheld mobile device [3]. This system is designed to be easy to use and 

not place a burden on users by having to acquire multiple images or a video of the eating 

occasions.

Portion size estimation is extremely difficult since many foods have large variations in shape 

and appearance due to eating or food preparation conditions. Most image-based dietary 

assessment systems use a single image [5, 6], multiple images [7], video [8], or 3D 

rangefinding [9]. For example, “DietCam” [2] is a mobile application where automatic food 

intake assessment is based on images acquired from multiple views. It requires users to 

acquire three images separated by about 120° which increases user burden. A mobile 

structured light system (SLS) to measure daily food intake is being developed by Sheng et 

al. [9]. A laser device which attaches to a mobile telephone is used to capture depth images 

of the food objects. This system seems burdensome and not suitable for daily use. Jia et al. 

[10] developed a wearable camera device to collect eating occasion information. It makes 

use of a known-size plate as the geometric reference. They define several simple geometric 

shapes to model food shapes and manual adjustment is required. Chen et al. [6] proposed a 

3D/2D model-based image registration method for quantitative food intake assessment. The 

method utilizes a global contour to solve the position, orientation and scale of the user-

selected 3D shape model. It obtains reliable food volume estimation for most simple-model 

food items. However, it does not have a solution for foods that do not fit a simple model (e.g. 

banana, pear) or complex structured food items (e.g. fries, salad). In addition, it only uses 

the outline of the object and discards the internal structure (lines, curves, and ridges) of the 

segments, which could lead to low accuracy in pose registration.

In the early development of our system, we used a shape template method for 3D 

reconstruction of some specific shaped food objects [11]. We utilized the feature/corner 

points from the segmented image to compute the geometric information of the shape 

template. However, this method is highly dependent on the accuracy of the segmentation 

mask and the feature points detection is not robust. Moreover, it fails when the food item has 

a complex or amorphous shape.

In this paper, we propose a novel and reliable volume estimation method based on geometric 

constraints and a contextual 3D model. We first obtain a 3D graphical model of the food 

object from multiple training images. We then compute a segmentation mask and a food 

label using our image segmentation and food identification techniques described in [12, 13, 

14]. The segmentation mask provides the location of a food item and the food label indicates 

the food identification as shown in Figure 1. A credit card sized colored checkerboard is 

used as the fiducial marker, which is included in every image as a geometric reference for 

the scale of the world coordinates and to provide color calibration information [15]. We then 

estimate the camera pose from the checkerboard and establish the world coordinates. The 

degrees-of-freedom of the pose for different foods are obtained based on the food 

identification. We utilize several geometric constraints and the food placement regularities to 

solve the pose registration problem. After the pose of a food item is determined, we are able 

to estimate the volume of the food. Once the volume is estimated, the nutrient content of the 

food is obtained using the density for that particular category of food [16].
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2. MODEL-BASED FOOD VOLUME ESTIMATION USING 3D MODELLING 

AND POSE ESTIMATION

3D shape recovery involves a one-to-many mapping from a 2D image to a 3D space. 

Therefore, single view 3D reconstruction in general is an ill-posed problem. However, if the 

location and identification of the food is known, and a 3D model of this food item is 

provided, we can simplify the 3D reconstruction problem to a 3D to 2D pose registration 

problem. Therefore, the 3D models of food items need to be trained and stored in the 

database prior to volume estimation.

2.1. 3D Model Generation

In order to obtain the 3D model, we first need to reconstruct the model of the food from 

multiple images or a video sequence. After taking multiple images or a video of the food 

items, we used a variation of a multi-view shape recovery method - Shape from Silhouettes 
[17], also known as Back-projection Reconstruction [18]. This method reconstructs a 3D 

model of an object from the set of contours that outline the projection of the object onto a 

sequence of 2D image planes. The ideal image acquisition step for shape from carving is to 

acquire images of the object from different view angles around it such as a turn-table. The 

typical number of images required for most food items are 15 to 20 images. These images 

can be obtained from video frames or by capturing multiple still images. The selection of 

frames can be automatically done by checkerboard detection and camera pose detection. 

Then, the intrinsic and extrinsic camera parameters need to be determined for each image. In 

our case, in order to calibrate the images, each image needs to include the checkerboard in 

the scene. After computing the camera calibration matrix, each camera image is converted to 

a binary mask which indicates the object silhouette using “1” for object pixels and “0” for 

background and other contents. Shadow, blur and specular reflection effects could decrease 

the segmentation accuracy. To make our method more robust to segmentation noise, we use 

morphological operators to clean up the boundary and avoid small holes (less than 1% of the 

segmented area of a food item) in the object mask.

Next, the bounding box of the object masks from each image is back-projected onto 3D 

world coordinates using the camera projection matrix. Based on this 3D bounding box, we 

fill it with a 3D grid of volume voxels, V, for “carving.” The next crucial step is to 

repeatedly project every υ ∈ Surf(V) onto all the camera images c1, c2, …cn, where Surf(V) 

is the surface of the volume formed by V. Any voxel that lies outside the object mask in ci 

needs to be removed or carved away. As the number of projection and carving steps 

increases, the object 3D boundary becomes tighter. The iteration is terminated if no non-

photo-consistent voxel is found. After carving away every voxel that does not belong to the 

3D object model, we obtain the 3D voxel-based model for this food item. We also estimate 

the volume of the food object by counting how many voxels are left and the size of the 

voxels from the world coordinate. As shown in Figure 2, we project the reconstructed 3D 

banana model onto the 2D image plane with various rotation angles. This is a training step 

and it is applied prior to the volume estimation experiments.
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2.2. Pose Initialization

Once the model of the food has been reconstructed, we use it to estimate the geometrical 

state of a food object in the world coordinate. In general, an indoor and small scale object 

has 9 degrees of freedom (DOF), W = (X, Y, Z, ΘX, ΘY, ΘZ, sx, sy, sz)T, consisting of the 

object translation along three coordinate axes, three rotation angles to the axes, and three 

relative scale parameters (see Figure 3).

When estimating the pose of a food item on the table, we put geometric constraints on the 

pose. The first constraint is that we assume the food object is adjacent to the table plane. We 

define the world coordinate with the checkerboard: one corner of the checkerboard pattern is 

assigned as the world origin Ow as shown in Figure 3. The x-axis and y-axis are aligned with 

the lines on the checkerboard thus x-y plane approximates the table plane. As a result, the 

3D point P on the object bottom surface has Zw = 0. Also, most food objects have only one 

placement position on the table. For example, a banana usually lays on the table on its side 

instead of standing up on the table. Accordingly, two remaining rotation angles of the food 

object on the table are represented by the azimuth angle ϕ and the elevation angle θ. The 

azimuth ϕ, is the horizontal rotation about the z-axis from the negative y-axis. The elevation 

θ is the vertical elevation of the viewpoint moving above the x-y plane (Figure 3).

We also observe that most non-rigid foods and beverages have isotropic shape (e.g. an 

orange) or symmetric and balanced shape (e.g. orange juice and donut). For these food items 

there is not much variation in the ratio of the width to the length of the foods. Therefore, we 

can safely fix the ratio of sx to sy with respect to the ratio we obtained from the 3D model 

for these foods. For food where the ratio of sx to sy has considerable variation from sample 

to sample (e.g. a banana), we currently use the average ratio of two dimensions sx, sy to 

approximate the 3D model of a banana. For other foods, we will obtain the possible range of 

the sx to sy ratio for the specific food and then project the 3D reconstructed model by 

varying the ratio along with the azimuth angle ϕ as well.

After determining the three DOF, the coordinate representation of the object can be written 

as E = (x, y, ϕ, θ, sx, sz)T. First, we use the bottom center 2D point p within the object 

contour on the image to define the object location. We find two displacement parameters x, y 
by back-projecting the 2D point p(px, py) to its corresponding 3D surface point P(x, y, 0) 

using (px, py, 1)T = K[R|T](x, y, 0, 1)T [19], where K, R, T are respectively the intrinsic 

matrix, the rotation matrix, and the translation vector obtained during the camera calibration 

step using the checkerboard. Elevation angle θ will be determined by the right triangle 

consisting of the camera center C, the object point P, and the projection point C′ that C 
projects onto the x-y plane as shown in Equation (1).

(1)

Two scale parameters sx, sz are given by the length and height of the bounding box on the 

segmented food.
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2.3. Pose Finalization

For rotation symmetric food items (e.g. bagel and orange juice), the object pose is invariant 

to the azimuth angle ϕ. In other cases, the self-rotation angle can be estimated by image 

patch matching. Previously, we have trained the food 3D model in our database and 

determined the elevation angle θ and two size factors sx, sz. Based on the fixed θ, we sample 

the 2D projection images by varying the self-rotation angle ϕ as shown in Figure 2. The 

images are sampled at 10° intervals and normalized by the size factors sx, sz. The last DOF ϕ 
is chosen by measuring the similarity between each sampled image Gϕ with the segmented 

food image F as shown in Equation (2).

(2)

Where F(xi, yi) is the gray scale value of a point (xi, yi) in the segmented food image patch. 

F̄ is the average intensity value of the image F. Gϕ(xi, yi) is the gray scale value of the point 

(xi, yi) on the sampled image after normalization in reference to ϕ. Ḡϕ is the average 

intensity value of the image Gϕ. i, j represents the pixel index. σF, σG are the standard 

deviation of F(x, y) and Gϕ(x, y), respectively. The similarity score between F and Gϕ is 

based on the normalized cross correlation (NCC) of these two image patches.

After the object pose is finalized, we render the predefined 3D model of the food into the 

world coordinate in the eating occasion. Food volume will be estimated based on the volume 

of the 3D rendering model.

3. EXPERIMENTAL RESULTS

The initial performance evaluation of our proposed single view volume estimation method 

was done by conducing an experiment with five food items (orange juice, bagel, orange, rice 

krispy treat and banana). We are interested in comparing template based methods [11] and 

our new proposed 3D model based method. Orange juice, rice krispy and orange treat can be 

reconstructed using a single view in an efficient manner since they have very regular shapes 

(cylinder, square box, and sphere). A bagel could also be considered as a regular shaped 

object, but due to the ambiguity of its color homogeneity, height, and depth information, it 

cannot be clearly distinguished. Moreover, its textureless uniform color composition does 

not allow us to use shape information to distinguish height from depth. A banana has a 

complex shape and there is no regular 3D geometrical template that can be used from the 2D 

segmentation mask. Orange juice and rice krispy treats are examples of foods where the 

template based approach [11] can be used, whereas bagels and bananas require a more 

complex model for their volume reconstruction.

The images were captured using the integrated camera available on the iPhone 3GS.We 

obtained 15 to 20 images for training as discussed in Section 2.1 and acquired 35 images per 

food from various view angles and estimated their corresponding volume using our method. 

The images are captured using different food items of the same type in training and 

evaluation steps. The results of the estimated volume (mean and standard deviation) for four 
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food items are shown in Table 1 in terms of milliliters and compared with ground truth 

volume obtained from a water displacement measurement. The estimation error is 

determined by |Ve − Vg|/Vg, where Ve is the estimated volume and Vg is the ground truth 

volume.

The results of banana and bagel for the template based method [11] are not available, 

because this method cannot be used for the foods without regular shapes. The results of 

orange juice, orange, and the rice krispy treat using template based method are satisfactory, 

but our method further improves the volume estimation accuracy. In addition, we observed 

the template based approach is sensitive to the segmentation noise, since it is based on 

feature extraction. Overall, our new 3D model based method achieves an average volume 

estimation error of 10%. Given that portion size estimation errors of more than 50% from 

human observation have been reported in the use of traditional dietary assessment methods 

[20, 21], our results are reasonable and exceed traditional approaches.

4. CONCLUSION

In this paper we proposed a single view volume estimation method to automatically estimate 

food portion size. Based on the experimental results, we observed that our model-based 

volume estimation method not only improves the volume estimation accuracy for foods with 

simple shapes, but also provides a quantitative approach to estimate volume for foods with 

irregular shapes. Compared with other methods, it appears to be robust to segmentation 

noise.

We plan to further investigate our method by testing it with other food items and examine 

the accuracy for foods with non-rigid shape (e.g. scrambled eggs) or foods with large 

variations in shape due to eating or food preparation conditions (e.g. cut carrots in a salad).
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Fig. 1. 
An example of a food image with checkerboard in the scene. Each food item is segmented 

and identified using our dietary assessment system.
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Fig. 2. 
An example of projecting a 3D banana model to a 2D image plane with two pose angles. 

The elevation angle ϕ is varied from 0° to 180°, and the azimuth angle θ is varied from 30° 

to 60°.
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Fig. 3. 
The geometric relationships between the camera center and the food object.
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Table 1

Comparison of a template based method and our model based method for food 5 items. The mean and 

standard deviation values are reported μ(σ).

Food
Item

Template
Based
Method(ml)

Model
Based
Method(ml)

Ground
Truth
(ml)

Error
of Our
Method

Banana N/A 182.6(15.9) 170 7.4%

Bagel N/A 151.2(14.3) 145 4.3%

Orange 179.5(43.2) 215(24.2) 244 12.3%

Orange
Juice

179.9(26.6) 183.1(19.1) 200 8.5%

Rice
Krispy
Treat

78.8(13.6) 72.5(5.3) 70 3.6%
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