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ABSTRACT

This paper presents a novel feature, Topographic High-order
Derivatives (THD) for 3D face recognition. THD is based on
the high-order micro-pattern information extracted from face
topography maps. Face topography maps are partitioned into
polar sectors, and THDs are computed using directional high-
order derivatives within the sectors. Local features are ex-
tracted by encoding directional high-order derivatives within
polar neighborhoods. To evaluate the proposed method,
we use Bosphorus and FRGC 3D face databases which in-
clude pose and expression changes. The performance of the
proposed method is higher compared to the state-of-the-art
benchmark approaches in 3D face recognition.

Index Terms— Topography, high-order derivatives, 3D
face, face recognition

1. INTRODUCTION

Local features have been used in 2D face recognition algo-
rithms due to their robustness to variations such as pose and
illumination changes. Bruneli and Poggio [1] proposed one
of the first methods in local approaches. They used a set of
automatically selected facial features and computed the nor-
malized cross-correlation between the region of the facial fea-
tures in the probe and the same region in all gallery images.
Nanni and Maio [2] proposed a Weighted Sub-Gabor method
in which the Gabor wavelet was applied at each sub-pattern
and the extracted Gabor features were projected to a low di-
mensional space. Ahonen et al. [3] applied Local Binary
Patterns (LBP) to the face recognition task. In LBP, face im-
ages are considered as a composition of micro-patterns and a
binary code is computed for pixels regarding their neighbors.
Kanan et al. [4] proposed a local approach for face represen-
tation and recognition based on Adaptively Weighted Patch
Pseudo Zernike Moment Array (AWPPZMA) using only one
exemplar image per person. Zhang et al. [5] proposed a local
pattern descriptor called Local Derivative Pattern (LDP). The

LDP templates extract high-order local information from 2D
images by encoding various distinctive partial relationships
contained in the local regions.

Recent research shows that 3D images have more advan-
tages in uncontrolled conditions compared to the traditional
2D images [6]. Cook et al. [7] partitioned 3D face images
into a predefined number of overlapping spatial sub-regions
and applied Log-Gabor transform to each sub-region at three
different scales. Chang et al. [8] segmented overlapped sub-
regions around the nose using ICP and combined the sub-
regions at the score level. Alyuz et al. [9] used a fast and
accurate region-based registration scheme to partition the 3D
face images into 15 patches and construct seven meaningful
regions. They applied Linear Discriminant Analysis (LDA)
[10] to the individual patches and the results were fused at the
decision level. Hajati et al. [11] proposed Patch Geodesic
Distance (PGD) for expression and pose invariant 3D face
recognition. In PGD, 3D face images are partitioned into dis-
tinct equal-sized square patches. Local geodesic paths within
the patches and global geodesic paths for the patches are then
combined to encode the shape adjusted textures into patterns.

We present a novel 3D face descriptor called Topographic
High-order Derivatives (THD). The THD extracts directional
high-order derivatives from the face topographic data. The
proposed method describes the 3D face images by spatial
micro-patterns extracted from both depth and texture data
which are more invariant under expression and pose varia-
tions compared to 3D benchmark approaches.

2. TOPOGRAPHIC HIGH-ORDER DERIVATIVES

One of the most common shape representation methods is the
topography map [12]. The distinctive characteristic of a to-
pographic map is that the shape of the surface is shown by
level curves (see Figure 1(a)). Level curves are lines that join
points of equal height on a surface above or below a reference
point (usually the highest point in the topography map) [13].
Given a surface z = f(x, y), the cross-section between the



surface and a horizontal plane, the plane which is parallel to
x-y plane, is called a level curve and the surface between two
level curves is called a level strip. The level strip with the
height index h, fh(x, y), is defined as

fh(x, y) = {(x, y, z)|zmax (1)
− h.wz < f(x, y) < zmax − (h− 1).wz}

where zmax is the maximum height in the surface, wz is the
step size of the level strip and h is the height index of the level
strip defined as

h = [z/wz] + 1 ; 0 ≤ z < zmax (2)

where wz varies from 1 to zmax.
Since the level strips can be represented more accurately

in the polar coordinates, we first transform the level strips
into polar coordinates. Given a level strip fh(x, y), the trans-
formed level strip in the polar coordinates, Fh(r, θ), is de-
fined as

Fh(r, θ) = fh(x, y) (3)

r =
√
(x− xp)2 + (y − yp)2 (4)

θ =

 0, ;x = xp, y = yp
tan−1(y − yp/x− xp), ;x ≥ xp

tan−1(y − yp/x− xp) + π ;x < xp

(5)

Here, xp and yp are the coordinates of the pole (i.e. nose tip).
In order to extract local features, the level strips are par-

titioned into the predefined patches and the derivatives are
computed within patches. We partition the level strips into
non-overlapping polar patches with wr and wθ as the patch
size in the radial and the angular directions, respectively. Af-
ter partitioning, the point (r, θ, z) in the level strip Fh(r, θ)
will be located in the (n,m)th patch where n and m indices
are determined as

n = [r/wr] + 1 ; 0 ≤ r < rmax (6)

m = [θ/wθ] + 1 ; 0 ≤ θ < 2π (7)

where wr and wθ are the patch sizes in the radial and the
angular directions, respectively. We define the patch sizes in
the radial and the angular directions (wr and wθ) as

wr = rmax/Nr (8)

wθ = 2π/3(2n− 1) (9)

where rmax and Nr are the maximum radius and the number
of sections in the radial direction, respectively. n is the patch
index number computed using Equation (6).

The total number of patches, Np, in the partitioned topog-
raphy map can be defined using Equation (10).

Np =

[rmax/wr]+1∑
k=1

3(2k − 1) (10)

Fig. 1. Example of face topography map and its partitioning
into polar patches.

Figure 1(b) illustrates an example of partitioning a face
topography map into polar patches. In the partitioned topog-
raphy map, the (n,m)th patch of the level strip with the height
index h, Fh

nm(rnm, θnm), is represented as

Fh
nm(rnm, θnm) = (11)

Fh(wr(n− 1) + rnm, wθ(m− 1) + θnm)

where Fh(r, θ) is the level strip with the height index h. rnm

and θnm are the coordinates of the (n,m)th patch of the par-
titioned level strip.

Figure 2 shows an 8-neighborhood in the (n,m)th patch
of the partitioned level strip. Let (rnm, θnm) be a point of
the (n,m)th patch of the level strip with the height index h,
Fh
nm(rnm, nm), the eight neighbors of the point are defined

as
Fh
nm(rnm1 , θnm1 ) = Fh

nm(rnm +∆r, θnm +∆θ) (12)

Fh
nm(rnm2 , θnm2 ) = Fh

nm(rnm +∆r, θnm) (13)

Fh
nm(rnm3 , θnm3 ) = Fh

nm(rnm +∆r, θnm −∆θ) (14)

Fh
nm(rnm4 , θnm4 ) = Fh

nm(rnm, θnm −∆θ) (15)

Fh
nm(rnm5 , θnm5 ) = Fh

nm(rnm −∆r, θnm −∆θ) (16)

Fh
nm(rnm6 , θnm6 ) = Fh

nm(rnm −∆r, θnm) (17)

Fh
nm(rnm7 , θnm7 ) = Fh

nm(rnm −∆r, θnm +∆θ) (18)

Fh
nm(rnm8 , θnm8 ) = Fh

nm(rnm, θnm +∆θ) (19)

where ∆r and ∆θ are the radial and angular resolutions of the
topography map.

Fig. 2. The 8-Neighborhood of a point in polar coordinates.

After determining the 8-neighborhood of the points, the
derivative along radial and angular directions with different



orders can be computed. The first-order polar derivatives
along the radial and the angular directions are defined as

∂Fh
nm(rnm, θnm)/∂r = (20)

Fh
nm(rnm, θnm)− Fh

nm(rnm +∆r, θmn)

∂Fh
nm(rnm, θnm)/∂θ = (21)

Fh
nm(rnm, θnm)− Fh

nm(rnm, θmn +∆θ)

Similarly, the second-order polar directional derivatives
can be defined as

∂2Fh
nm(rnm, θnm)/∂r2 = (22)

∂Fh
nm(rnm, θnm)/∂r − ∂Fh

nm(rnm +∆r, θmn)/∂r

∂2Fh
nm(rnm, θnm)/∂θ2 = (23)

∂Fh
nm(rnm, θnm)/∂θ − ∂Fh

nm(rnm, θmn +∆θ)/∂θ

Generally, the lth-order polar directional derivatives are
defined using the (l− 1)th-order polar directional derivatives
as

∂lFh
nm(rnm, θnm)/∂rl = ∂(l−1)Fh

nm(rnm, θnm)/∂r(l−1)

− ∂(l−1)Fh
nm(rnm +∆r, θmn)/∂r(l−1) (24)

∂lFh
nm(rnm, θnm)/∂θl = ∂(l−1)Fh

nm(rnm, θnm)/∂θ(l−1)

− ∂(l−1)Fh
nm(rnm, θmn +∆θ)/∂θ(l−1) (25)

We encode the computed derivatives into binary bits us-
ing the unit step function, thereby forming a binary pattern.
The lth-order directional Topographic High-order Derivatives
Patterns (THDP) in the radial and the angular directions in
the (n,m)th patch of the level strip with the height index h,
Fh
nm(rnm, θnm), are defined as

THDP l
r(F

h
nm(rnm, θnm)) =

8∑
i=1

2i· (26)

u(∂(l)Fh
nm(rnm, θnm)/∂r(l) · ∂(l)Fh

nm(rnmi , θnmi )/∂r(l))

THDP l
θ(F

h
nm(rnm, θnm)) =

8∑
i=1

2i· (27)

u(∂(l)Fh
nm(rnm, θnm)/∂θ(l) · ∂(l)Fh

nm(rnmi , θnmi )/∂θ(l))

where THDP l
r(F

h
nm(rnm, θnm)) and

THDP l
θ(F

h
nm(rnm, θnm)) are the lth-order directional To-

pographic High-order Derivatives Patterns (THDP) at point
(rnm, θnm) of the (n,m)th patch along the radial and the
angular directions, respectively. u(·) is the unit step function
determining the direction of local pattern transitions. The
result of directional THDP computations for an example 3D
face image along the radial direction is illustrated in Figure 3.

Finally, we model the distribution of the directional
THDPs using the spatial histogram [14] and concatenate
them to make a feature vector as

HTHDP l(Fh
nm(rnm, θnm)) = (28)

{HTHDP l
r(F

h
nm(rnm, θnm)),HTHDP l

θ(F
h
nm(rnm, θnm))}

(a) (b) (c) (d) (e)
Fig. 3. THDP along the radial direction. (a) original par-
titioned topography map, (b) first-order THDP, (c) second-
order THDP, (d) third-order THDP, (e) forth-order THDP.

where HTHDP l
r(F

h
nm(rnm, θnm)) and

HTHDP l
θ(F

h
nm(rnm, θnm)) are the THDPs histogram vec-

tors extracted in the radial and the angular directions, respec-
tively. In this paper, we also apply the THD operator to the
texture data. The texture map is partitioned similary to the
height map. The lth-order directional Topographic High-
order Derivatives Patterns along the radial and the angular
directions of the texture of the level strip with the height
index h, Th

nm(rnm, θnm), are defined as

THDP l
r(T

h
nm(rnm, θnm)) =

8∑
i=1

2i· (29)

u(∂(l)Th
nm(rnm, θnm)/∂r(l) · ∂(l)Th

nm(rnmi , θnmi )/∂r(l))

THDP l
θ(T

h
nm(rnm, θnm)) =

8∑
i=1

2i· (30)

u(∂(l)Th
nm(rnm, θnm)/∂θ(l) · ∂(n)Th

nm(rnmi , θnmi )/∂θ(l))

We also model and concatenate the distribution of texture
THDPs using the spatial histogram as

HTHDP l(Th
nm(rnm, θnm)) = (31)

{HTHDP l
r(T

h
nm(rnm, θnm)), HTHDP l

θ(T
h
nm(rnm, θnm))}

We used the histogram intersection method [15] to mea-
sure the similarity between the histograms of the height and
the texture data in the query and model images as

SHI(H,S) =
32∑
j=1

min(Hj , Sj) (32)

where H = (H1,H2, , H32) and S = (S1, S2, , S32) are 32-
bin histograms of the query and the model, respectively.

Finally, we combine the height and the texture data at the
decision level with a balancing weight as

S(H,S) = (Sh
HI + wb.S

t
HI)

1/2 (33)

where Sh
HI and St

HI are the histogram intersections of the
height and the texture data, respectively, and wb is the balanc-
ing weight.

3. EXPRIMENTAL RESULTS

Here, we investigate the robustness of the proposed method
in the face recognition task under pose and expression vari-
ations. We used the Bosphorus [16] and the FRGC v2 [17]
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Fig. 5. The recognition rates for different THD orders.

databases. The face images are resampled to 160 by 160 with
20 level strips.

We select the number of sections in the radial direction
Nr, the balancing weight wb, and the best THD order to op-
timize the performance of the proposed method on selected
training data from the Bosphorus database, one image per
subject with a random pose. The system’s rank-1 recogni-
tion rate with different values of Nr and wb is displayed in
Figure 4. From Figure 4, the system has the best performance
when Nr=4 and wb=1. In the next experiment, the system’s
performance versus the THD’s order is evaluated (see Figure
5). Results show that the second-order THD is the best for the
proposed method.

We evaluate the robustness of the proposed method using
faces with pose variations from Bosphorus database. in this
paper, we used only one frontal image per enrolled subject is
used as the gallery. There are three different poses (yaw, pitch
and mixture) for each subject, and we used a total of 1155
images for all 105 subjects as probes. The rank-1 recognition
rates of the proposed method are shown in Table 1. In yaw
rotations, our method achieves 85.1% recognition rate, while
the benchmarks [18] and [11] have 38.3% and 67.6% recogni-
tion rates, respectively. Again for pitch rotations, recognition
rate of the proposed method is 92.5% compared to 76.2% and
80.9% for the benchmarks. The rank-1 recognition rate of
the proposed method for faces with mixture rotation is 75.2%
compared to 26.7% and 49.1% for the benchmarks.

We compared the proposed algorithm using the FRGC v2
database with methods used in [19] and [20] as the bench-
mark. We selected one neutral face for each class (person) to
create the gallery; 466 training face images for 466 classes in
total. The rank-1 recognition rate of the proposed method is
shown in Table 2. As can be seen, the proposed method has
achieved a recognition rate of 98.1% and 92% for the neutral
versus neutral and for the neutral versus non- neutral scenar-
ios, respectively. The proposed method performs better than
[20], and is comparable to [19]. THD maintains a high level

of accuracy even on the faces having expressions, due to the
robustness of THD to surface deformations. Note that the
above results are obtained on the FRGC v2 dataset while the
parameters were trained on a subset of the Bosphorus dataset.
This proves that our approach has not been over-fitted to any
database.

Table 1. Comparing the rank-1 recognition rate of THD and
the benchmarks in faces with pose varations.

Considered
Rotation

Malassiotis and
Strintzis [18]

Hajati et
al. [11] THD

Yaw 38.3% 67.6% 85.1%
Pitch 76.2% 80.9% 92.5%

Mixture 26.7% 49.1% 75.2%
Average 47.1% 65.9% 84.3%

Table 2. Comparing the rank-1 recognition rate of THD and
the benchmarks in faces with expression variations.

Considered
Scenario

Berretti
et al. [20]

Mian et
al. [19] THD

Neutral vs.
Neutral 96% 99% 98.1%

Non-neutral vs.
Neutral 91.4% 95.4% 92%

All vs. Neutral 94% 97.7% 94.7%

4. CONCLUSION

In this paper, a novel algorithm called Topographic High-
order Derivatives (THD) was presented for 3D face recog-
nition. Topography map of the face was partitioned into a
predefined number of patches in both the texture and the
height maps and high-order micro-pattern features were ex-
tracted from patches. To model the distribution of THD, an
ensemble of spatial histograms is extracted as the represen-
tation of the input face image. We evaluated THD for pose
and expression invariant face recognition task. Consider-
able improvements in the face recognition performance were
achieved compared to the benchmark methods. Experimental
results demonstrated that the proposed algorithm performs
well on large databases such as the FRGC v2.
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