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ABSTRACT
In this paper, we exploit gradient histograms for person

identification based on gait. A traditional and successful
method for gait recognition is the Gait Energy Image (GEI).
Here, person silhouettes are averaged over full gait cycles,
which leads to a robust and efficient representation. However,
binarized silhouettes only capture edge information at the
boundary of the person. By contrast, the Gradient Histogram
Energy Image (GHEI) also captures edges within the silhou-
ette by means of gradient histograms. Combined with precise
α-matte preprocessing and with a new part-based extension,
recognition performance can be further improved. In addi-
tion, we show, that GEI can even be outperformed by directly
applying gradient histogram extraction on the already bina-
rized silhouettes. We run all experiments on the widely used
HumanID gait database and show significant performance
improvements over the current state of the art.

Index Terms— Biometrics, Gait Recognition, Histogram
of Oriented Gradients, Gradient Histogram Energy Image

1. INTRODUCTION

Gait is an important biometric modality of recognizing hu-
mans. Especially at large distances, where other modalities
such as face and fingerprint cannot be extracted, gait signa-
tures are still available and can be obtained from low reso-
lution video streams and without the person’s cooperation.
Thus, there is growing interest in gait recognition approaches
and a multitude of recent methods and approaches have
shown the capability of gait as a biometric.

Many of the most successful gait recognition approaches
are probably those that are based on the Gait Energy Image
(GEI) [1]. In GEI, binarized silhouettes are extracted at each
frame and are averaged over full gait cycles (see Fig. 1a).
While this binarization and averaging reduces noise, it also
destroys a lot of the available information. Due to the ex-
traction of binarized silhouettes, in essence, only edge infor-
mation at the boundary is captured. Any edges or gradients
inside the silhouette are completely discarded. For example,
the arm swinging in front of the person is largely lost due to
the binarized silhouette. An efficient way to overcome this
limitation of GEI is the Gradient Histogram Energy Image
(GHEI) [2]. Here, gradient histograms are extracted at all

locations without any early binarization, then the histograms
are averaged. This method captures gradients also within the
person’s silhouette.

In this paper we present improvements by using the robust
and efficient gradient histogram representation, which signif-
icantly outperform standard GEI. Additional improvements
can be reported when using precise α-matte segmentation, as
well as precise part localization for body parts like head, torso
and legs. The resulting α-part-based Gradient Histogram En-
ergy Image (α-pb-GHEI) significantly outperforms the full-
body approach. Furthermore, to directly assess the power of
gradient histograms, we perform an additional investigation
by applying GHEI directly on the binarized silhouettes and
show that even in this case GEI is outperformed (even though
not as much as using α-pb-GHEI). We test our algorithms on
the popular and widely used HumanID Gait database [3].

2. RELATED WORK

Generally speaking, gait recognition methods can be catego-
rized into model-based and model-free approaches. In model-
based methods [4][5], in a first step, a human body model is
fitted to the input data. Recognition is then performed based
on the model parameters or the change of these model param-
eters. However, in practice, fitting a body model has turned
out to be extremely difficult and fitting results are too noisy to
be used for individual identification. In contrast, model-free
methods [1][2][3][6][7][8][9][10][11][12][13][14][15][16]
directly extract features from the input data without an in-
termediate human body model and thus a robust statistical
person model can be built. Due to its robustness and effi-
ciency, most current methods, including ours, are model-free.

It is interesting to note that almost all of the successful gait
recognition methods rely more or less on the silhouette aver-
aging idea of the Gait Energy Image (GEI) [1]. For a robust
recognition system, apparently reducing noise by taking the
mean of gait cycles outweighs the loss of data which comes
with averaging. Histograms are a very good way to handle
noise. In [17], similar to our approach, the authors use His-
tograms of Oriented Gradient (HOG) to model the input data.
However, in their approach, they run HOG only once on the
Gait Energy Image. This is contrary to our approach, since
we calculate HOG on each frame separately and average the
resulting gradient histograms.



HOG
extraction

GHEI

input 
sequence

silhouette
extraction

α-GHEI α-pb-GHEI

part based
object detector

(inc. HOG)

GHEI on
silhouettesGEI

foreground
segmentation

(α-mattes)

HOG
extraction

HOG
extraction

(a) (b) (c) (d) (e)

average
on gait cycle

average
on gait cycle

average
on gait cycle

average
on gait cycle

average
on gait cycle

Fig. 1: Extraction of the different variations of Gradient His-
togram Energy Images (GHEI) compared to the Gait Energy
Image (GEI).

3. THE GRADIENT HISTOGRAM ENERGY IMAGE

The Gradient Histogram Energy Image (GHEI) is in essence
a combination of Gait Energy Image (GEI) and Histograms
of Oriented Gradients (HOG).

The idea is driven by the observation that in GEI, edge
information inside the body silhouette is lost due to the bina-
rization in the foreground segmentation step. Histograms of
Oriented Gradients have proven to be a highly efficient way of
capturing edges. Therefore, combining the basic idea of GEI
with the edge capturing capabilities of HOG leads to robust
and efficient feature extraction.

The process of gradient histogram calculation can be de-
tailed as follows: First, at each pixel of the tracked bounding
box I , magnitude r and orientation θ of intensity gradients are
computed:

r(x, y) =
√
u(x, y)2 + v(x, y)2 (1)

θ(x, y) = atan2(u(x, y), v(x, y)) + π (2)

with u(x, y) = I(x − 1, y) − I(x + 1, y) and v(x, y) =
I(x, y− 1)− I(x, y+ 1). Gradient orientations at each pixel
are discretized into 9 orientations:

θ̂(x, y) =

⌊
9 · θ(x, y)

2π

⌋
(3)

These discretized gradient orientations are then aggregated
into a dense grid of non-overlapping square image regions,
the so called “cells” (each containing typically 8 × 8 pixels).

Each of these cells is thus represented by a 9-bin histogram of
oriented gradients. Finally, each cell is normalized four times
(by blocks of four surrounding cells each) leading to 9·4 = 36
values for each cell. (Details to be found in [18]). Thus, the
final HOG description of a patch containing m × n cells has
dimension of m× n× 36.

At each frame t in a gait cycle, a gradient histogram de-
scriptor ht(i, j, f) is computed on the size and position nor-
malized RGB-image inside the bounding box. Here, i and j
are pointing to the histogram cell at position (i, j) and f is
the index to the histogram bin. The GHEI is then obtained by
averaging the gradient histogram representations over a full
gait cycle consisting of T frames:

H(i, j, f) =
1

T

T∑
t=1

ht(i, j, f) (4)

Each gait cycle is finally represented by a multidimensional
feature vector H(i, j, f).

3.1. Precise Foreground Segmentation

Averaging over gradient histograms also means that gradi-
ents in the background are averaged. It is assumed, since the
background is changing within the tracked bounding box that
background gradients would average out over a full gait cycle.
However, in practice this is only partly the case. There are still
distinct and high-magnitude edges in the background, which
degrade the GHEI and lead to worse results. Figure 1 (on top)
shows a typical input sequence with disturbing background.
The resulting GHEI (Figure 1c) captures the major gradients,
however, also background edges have a high impact on the
gradient histograms.

An appropriate way to circumvent this issue is by setting
all background pixels to zero before calculating the gradient
histograms. As proposed in [19], this is done by precise back-
ground modeling using α-matte segmentation. The α-matte
segmentation (we use closed form matting [20]) is an efficient
and precise way to segment the foreground from the back-
ground. This way, all the background pixels are discarded,
while all edges in the foreground can be captured in the gra-
dient histograms. Figure 1 (top right) shows the result after
α-matte segmentation. The final α-GHEI descriptor (Figure
1d) is much cleaner and shows more relevant gradients.

3.2. Part-Based Gradient Histogram Energy Image

For typical gait recognition methods, first the person has to be
detected and tracked. However, in most current gait recogni-
tion approaches, detection and tracking were never the focus.
Typical databases usually show only one person at a time and
the background is relatively controlled. So standard back-
ground modeling followed by a simple blob tracker is suf-
ficient for person localization. For GHEI extraction, as de-
scribed above, the same localization method was used.



Fig. 2: Top row: Results of a part-based person detector on a
sequence of frames. Here, foreground is already segmented
using α-matte segmentation. Bottom row: Corresponding
HOG features for all parts.

Since the HOG features are typically used in object detec-
tion, it is possible to simultaneously use the HOG features for
both detection and identification using GHEI. Thus, instead of
blob-tracking, we employ a tracking-by-detection approach
using a HOG-based person detector.

This has the major advantage that at each frame, the de-
tector precisely locates the position and the scale of the per-
son. This precise detection is often not guaranteed in the com-
monly used blob tracker, where erroneous background seg-
mentation can lead to bad position and scale detection.

Recently, part-based object detectors have received re-
markable attention [21][22]. Here not only one sliding win-
dow (root) is used for object search, but in addition, multiple
smaller object windows (parts) are used. The joint appear-
ance and relative location of the parts with respect to the root
part are used for object detection. In case of a person model,
this means that body parts like head, torso, hips and feet are
separately detected and located within the image.

We leverage this separate detection and localization of
body parts for the purpose of gait feature extraction. First,
HOG features hkt are generated for all body parts, as well as
for the root part. Gradient Histogram Energy Images Hk are
then calculated for the root window r and all l part windows
p1 . . . pl by averaging over a full gait cycle:

Hk(i, j, f) =
1

T

T∑
t=1

hkt (i, j, f) k ∈ {r, p1, . . . , pl} (5)

In addition, the final feature vector also contains the mean
of the relative positioning xk of each part with respect to the
root part: Xk = 1

T

∑T
t=1 xk. This way, a rough posture of

the person can be captured. Finally, all data is concatenated
to form the final α-pb-GHEI feature vector:

Hα-pb-GHEI =
[
Hroot, Hp1 , . . . ,Hpl , Xp1 , . . . , Xpl

]
(6)

The part-based object detection and the corresponding
part-based HOG features are depicted in Figure 2. After av-
eraging over a full gait cycle, a α-pb-GHEI such as shown in
Figure 1e) is obtained.
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Fig. 3: Results of the GHEI and the three variants α-GHEI,
silhouette-GHEI, α-pb-GHEI compared to baseline Gait En-
ergy Image (GEI).

4. EXPERIMENTS

To test the GHEI features, we use an identification system
similar to the one presented in [1]. Here, dimension reduc-
tion is done by Principal Component Analysis followed by
Linear Discriminant Analysis (PCA+MDA). Classification is
done using nearest neighbor. This combination of dimension
reduction and classifier has proven highly effective for prob-
lems with a small amount of training data, which is typical for
the gait recognition problem.

To evaluate the effectiveness of the proposed Gradient
Histogram Energy Image and its variants, we run experiments
on the widely used USF HumanID gait database [3]. In this
database, a total of 122 subjects walk in elliptical paths with
multiple variations. These variations include surface, brief-
case, shoes and sampling time. In [3], 12 experiments (A to L)
using different combinations of variations have been defined.
Experiment A-C are the easiest with only view and shoe type
changing. Experiments D-G in addition have surface varia-
tion. In experiments H-J, in addition to view and shoe type,
subjects carry a briefcase. For the most challenging setups
(experiment K-L), probe samples were recorded significantly
after the gallery samples and subjects were wearing different
clothes.

4.1. Performance of Part-Based Gradient Histogram En-
ergy Image

Figure 3 shows the performance of α-pb-GHEI with respect
to the GEI baseline and the other GHEI variants on all twelve
experiments of the HumanID gait database. It can be seen,
that α-pb-GHEI greatly outperforms all these methods in al-
most all experimental settings. The α-pb-GHEI uses the same



α-matte preprocessing as used in α-GHEI, but represents an
extension using precise localization of the body and its parts.
It can be seen that, compared to GHEI, α-pb-GHEI is bet-
ter capable of capturing the person’s identity even in cases of
severe changes in visual appearances. This can especially be
observed in cases with the briefcase (experiments H-J), where
a high relative performance gain can be reported. The part and
root localization is thus capable of reliably capturing relevant
parts and does not get diverted by local but strong degrada-
tions like the briefcase. Thus, no explicit removal of carried
objects (such as done in [23]) has to be used.

4.2. Gradient Histogram Energy Image on Binary Sil-
houettes

The idea of Gradient Histogram Energy Image is to capture
edges not only at the silhouette boundary, but also inside the
silhouette. In general, gradient extraction is therefore per-
formed on the RGB sequence. As a reference experiment,
we applied GHEI extraction directly on binarized silhouettes
which were obtained using a simple (and noisy) Gaussian
Mixture Model extraction. As shown in Figure 3, it can be
observed that the resulting silhouette-GHEI still greatly out-
performs standard GEI, especially in scenarios with change
in surface and in briefcase condition. This substantiates the
conclusion that the gradient histograms are indeed a much
better and more robust way to capture gradients than the pure
averaging of silhouettes in GEI.

4.3. Comparison to Other Methods

We compare all our approaches to several current state-of-
the-art results reported in the literature. Rank 1 and Rank
5 performance on all 12 experiments, as well as a weighed
average rate are summarized in Table 1.

It can be seen that GHEI, α-GHEI and α-pb-GHEI out-
perform the other methods in almost all experiments.

With an average recognition rate of 83.2% the α-pb-
GHEI surpasses the standard GEI by 63%. Even when run
on limiting silhouette data, silhouette-GHEI still outperforms
GEI by 27%, which shows the superiority of gradient his-
togram representation for person identification.

5. CONCLUSION AND OUTLOOK

In this work we made several improvements to the Gradient
Histogram Energy Image. We presented a part-based exten-
sion with precise detection of body parts, which is beneficial,
especially for cases with degrading visual conditions such as
briefcase and cloth changes. In addition, we applied GHEI di-
rectly on binary silhouettes and were able to show that the gra-
dient histogram representation outperforms the classical Gait
Energy Image, even when using the same binary silhouette
data.

Probe Set A B C D E F G H I J K L avg.

Probe Size 122 54 54 121 60 121 60 120 60 120 33 33 -

Variations view,
shoe

surface,
view,
shoe

briefcase,
view,
shoe

time,
cloth-
ing

Rank 1 Performance
Baseline [3] 73 78 48 32 22 17 17 61 57 36 3 3 41.0

GEI [1] 89 87 78 36 38 20 28 62 59 59 3 6 51.0
α-GEI [19] 89 87 79 30 36 21 19 83 69 63 6 6 53.6

GEI+Synth [1] 90 91 81 56 64 25 36 64 60 60 6 15 57.7
HMM [7] 89 88 68 35 28 15 21 85 80 58 17 15 53.5

DATER [24] 89 93 80 44 45 25 33 80 79 60 18 21 58.5
MMFA [10] 89 94 80 44 47 25 33 85 83 60 27 21 59.9

GTDA [9] 91 93 86 32 47 21 32 95 90 68 16 19 60.6
I-to-C [6] 93 89 81 54 52 32 34 81 78 62 12 9 61.2
GDN [8] 85 89 72 57 66 46 41 83 79 52 15 24 62.8

silhouette-GHEI 97 87 74 64 59 42 34 82 66 73 6 9 64.7
GHEI 98 91 87 70 67 30 26 96 91 88 12 3 70.2

α-GHEI 98 93 87 94 86 62 50 94 91 85 12 12 79.8
α-pb-GHEI 99 94 91 93 90 64 45 99 98 96 18 21 83.2

Rank 5 Performance
Baseline [3] 88 93 78 66 55 42 38 85 78 62 12 15 64.5

GEI [1] 93 93 89 65 60 42 45 88 79 80 6 9 68.7
α-GEI [19] 93 94 91 55 59 39 40 92 88 81 18 15 68.7

GEI+Synth [1] 93 96 93 75 71 54 53 78 82 64 33 42 72.1
HMM [7] - - - - - - - - - - - - -

DATER [24] 96 96 94 74 79 53 57 93 91 83 40 36 77.9
MMFA [10] 98 98 94 76 76 57 60 95 93 84 48 39 79.9

GTDA [9] 98 99 95 58 64 41 52 98 99 87 31 37 74.9
I-to-C [6] 97 98 93 81 74 59 55 94 95 83 30 33 79.2
GDN [8] 96 94 89 85 81 68 69 96 95 79 46 39 82.1

silhouette-GHEI 99 94 91 86 76 69 62 97 88 91 12 21 81.5
GHEI 100 94 91 87 74 62 60 99 98 96 15 15 82.0

α-GHEI 100 93 93 97 93 81 78 99 98 93 21 24 88.1
α-pb-GHEI 100 94 93 97 93 83 72 100 98 98 30 30 89.4

Table 1: Comparison of GHEI variants to other methods:
Baseline [3]; Gait Energy Image (GEI) [1]; Hidden Markov
Models (HMM) [7]; Alpha Gait Energy Image (α-GEI) [19];
Discriminant Analysis with Tensor Representation (DATER)
[24]; Marginal Fisher Analysis (MMFA) [10]; General Tensor
Discriminant Analysis (GTDA) [9]; Image-to-Class Distance
(I-to-C) [6]; Gait Dynamics Normalization (GDN) [8]; origi-
nal Gradient Histogram Energy Image (GHEI) [2].

It is important to note that for all our experiments we use a
relatively simple feature reduction and classification scheme.
An obvious extension would thus be to combine better clas-
sification methods (tensor discriminant analysis, sparse rep-
resentation, . . . ) with GHEI. In addition, the presented part-
based α-pb-GHEI can be improved. Currently parts are se-
lected by optimal detection performance and not by optimal
identification performance. Furthermore, temporal informa-
tion could be used for better part alignment.

In summary, GHEI has shown high person identification
performance. Also, GHEI nicely integrates to part-based per-
son detectors. Thus, combined detection, tracking and iden-
tification systems can emerge, which will be necessary for
more realistic gait recognition in actual surveillance videos.
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