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ABSTRACT

We propose the combination of dense Histogram of Oriented Gradi-
ents (HOG) features with Active Appearance Models (AAMs). We
employ the efficient Inverse Compositional optimization technique
and show results for the task of face fitting. By taking advantage
of the descriptive characteristics of HOG features, we build robust
and accurate AAMs that generalize well to unseen faces with illu-
mination, identity, pose and occlusion variations. Our experiments
on challenging in-the-wild databases show that HOG AAMs signif-
icantly outperfrom current state-of-the-art results of discriminative
methods trained on larger databases.

Index Terms— Active Appearance Models, Histogram of Ori-
ented Gradients, Inverse Compositional optizimation

1. INTRODUCTION

Active Appearance Models (AAMs) are generative parametric de-
formable statistical models of the shape and appearance variation of
an object that are widely used in various tasks of Human-Computer
Interaction and Image and Video Processing. They have been used in
numerous applications such as face fitting, facial expressions recog-
nition and medical imaging. They were initially proposed in [1] and
they are descendants of Active Contour Models [2] and Active Shape
Models [3]. The fitting process of an AAM aims to bring a test im-
age into registration with a reference template, even if the test image
is a deformed instance of the template. The most common choise
for fitting an AAM is the Inverse Compositional (IC) optimization
techique [4, 5, 6], though other methodologies have been used, such
as regression [1, 7]. IC is a non-linear gradient descent optimiza-
tion algorithm that attempts to minimize the discrepancy between a
warped input image and a parametric model instance with respect to
the shape and appearance parameters.

Since IC is a gradient descent method, the alignment is sensitive
to initialization and to large appearance variations in terms of illumi-
nation, expressions, occlusion and identity. Especially, in the case of
intensities-based AAMs with the Project-Out IC algorithm [4], the
model is incapable of adequately generalizing in order to be robust
to outliers. This is the main reason why AAMs have been criticized
of being able to perform well only in person specific applications
and not generic ones. In this paper, we show that the combination of
the IC framework with a powerful and descriptive features descriptor
results in a generic deformable model with remarkable performance.

The concept of dense feature-based image representation is
also adopted in [8], where the authors use correspondences be-
tween densely computed SIFT descriptors. However it is applied
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on scene alignment and face recognition and not on deformable
models fitting. There are several attempts in recent bibliography
to build a feature-based AAM framework. The authors in [9] use
novel features based on the orientations of gradients to represent
edge structure within a regression framework. Similar features are
employed in [6] to create a robust similarity optimization criterion.
In [10] a combination of grayscale intensities, hue channel and edge
magnitude is used to build the appearance model. Moreover, the
work in [11] applies the IC optimization algorithm in the Fourier
domain using Gabor responses. In [12] a new appearance repre-
sentation is introduced for AAMs by combining Gabor wavelet and
Local Binary Pattern descriptor. The authors in [13] employ Gabor
magnitude features summed over either orientations or scales or
both to build an appearance model. Similarly, the authors in [14]
model the characteristic functions of Gabor magnitude and phase
by using lognormal and Gaussian density functions respectively and
utilize the mean of the characteristics over orientations and scales.

In this paper, we employ densely-sampled Histogram of Ori-
ented Gradients (HOG) features [15] to train the AAM appearance
model. To the best of our knowledge, this is the first time that
a generic feature-based AAM is developped using dense HOGs.
We perform cross-database experiments on in-the-wild images us-
ing two IC algorithms: Alternating IC (AIC) [5] and Project-Out
IC (POIC) [4]. Finally, we show that our HOG AAMs greatly
outperform state-of-the-art methods in facial alignment, which are
discriminatively trained on much more data than our approach.

2. HISTOGRAMS OF ORIENTED GRADIENTS

We extract dense HOG descriptors at each pixel of an image, based
on the method introduced in [15]. This means that given an input
image of size H × W , the densely-sampled multichannel features
image has size H ×W × D. Let us denote the HOG features ex-
traction function asH and an input image in vectorial form as t with
length LT . Then the HOG image in vectorial form is

h = H(t) (1)

where H : RLT×1 −→ RLTD×1. The HOG extraction func-
tion clusters gradient orientations in different bins for localized sub-
windows of the input image. Specifically, we first compute the im-
age gradient and in the case of an RGB image, we keep the gradient
with the largest norm between the gradients of the three channels.
For each pixel of the image, we use two spatial neighbourhoods:
cells and blocks. A cell is a small rectangular sub-window of size
Ncell pixels in height and width, from which we create a histogram
of the gradient orientations weighted by the gradient magnitude of
each pixel. This orientation binning procedure reveals the non-linear
nature of the HOG descriptors. Each histogram has Nbins and we
apply trilinear interpolation between the votes of neighbouring bin



(a) Original image (b) Ncell = 8, Nblock = 2 (c) Ncell = 4, Nblock = 2 (d) Ncell = 8, Nblock = 1 (e) Ncell = 4, Nblock = 1

Fig. 1. Example of dense HOG features. Ncell denotes the cell height and width in pixels and Nblock denotes the number of cells that consist
a block. Thus, (b) and (c) have D = 36 channels whereas (d) and (f) have D = 9 channels. We visualize the sum over all the D channels.

centres with respect to orientation and position. A block is a larger
spatial neighbourhood that consists of Nblock × Nblock cells. After
applying contrast normalization at each block, the final descriptor
vector at each image pixel is constructed by concatenating the his-
tograms of the cells, thus it has length D = NbinsN

2
block.

The local contrast normalization adopted at each block is es-
sential as it makes the features image invariant to illumination and
foreground-background intense differences. Thus, HOG features
have great advantages, such as invariance to geometric and photo-
metric variations, which are important for building robust generic
deformable models. We altered the code provided by [16] in order
to extract dense HOG features. We use Nbins = 9 histogram bins
and experiment with the cell size (Ncell ∈ {4, 8}) and the block
normalization (Nblock ∈ {1, 2}). Figure 1 shows indicative HOG
images by summing over all their channels.

3. HOG ACTIVE APPEARANCE MODELS

3.1. Training

Let us denote a shape instance of LS landmark points as s =
[x1, y1, . . . , xLS , yLS ]T . The shape model is constructed by align-
ing a set of training shapes {si} using Genaralized Procrustes
Analysis and applying Principal Component Analysis (PCA) on the
aligned shapes to end up with an orthonormal basis of NS eigen-
vectors US ∈ R2LS×NS and the mean shape s̄. The first four
eigenshapes correspond to the similarity transform parameters that
control the global rotation, scaling and translation. A shape instance
is generated as sp = s̄ + USp, where p is the NS × 1 vector of
shape parameters. The motion model consists of the warp function
W(p), which maps the points within a source shape to their corre-
sponding coordinates in a target shape. We employ the Piecewise
Affine Warp, which performs the mapping based on the barycentric
coordinates of the corresponding triangles between the two shapes
that are extracted using Delaunay Triangulation.

Given a set of training annotated images {ti}, we compute their
HOG features {hi} (Eq. 1) and warp them into the mean shape s̄,
ending up with a set of aligned vectors. Each vector has length
LA, i.e. the number of pixels that lay inside the mean shape. Then
we apply PCA to find an appearance subspace UA ∈ RLA×NA

of NA eigentextures and the mean appearance vector ā. Synthe-
sis is achieved through linear combination of the eigentextures as
aλ = ā + UAλ, where λ is the NA × 1 appearance parameters
vector.

3.2. Inverse Compositional Optimization

The aim of AAM fitting is to minimize the `2-norm between an in-
put vectorized HOG image h and the HOG appearance model with
respect to the shape and appearance parameters, i.e.

argminp,λ‖h(W(p))− ā−UAλ‖2 (2)

In general, the IC optimization introduces an incremental warp that
is applied on the residual term as

argmin∆p,λ‖h(W(p))− ā(W(∆p))−UA(W(∆p))λ‖2

This problem is solved by performing a first order Taylor expansion
on the residual term with respect to the parameters increment ∆p
and composing the current warp with the incremental warp at each
iteration asW(p)←W(p) ◦W(∆p)−1. The linearization is

ā(W(∆p)) + UA(W(∆p))λ ≈ ā + UAλ + J|p=0∆p

where J|p=0 = ∇(ā + UAλ) ∂W
∂p

∣∣∣
p=0

is the Jacobian. Note that

the appearance model is based on the HOG representation of Eq. 1.
Hence, in the partial derivative of the Jacobian, we make the assump-
tion that ∂H

∂t
∇t ≈ ∇H(t), which means that we neglect the partial

derivative ofH and deal withH(t) as a multichannel image. In this
work, we use the Alternating and Project-Out IC algorithms.

Alternating: The AIC algorithm, proposed in [5], deals with the
problem of Eq. 2, by solving two separate minimization problems,
one for the shape and one for the appearance optimal parameters, in
an alternating manner. The two cost functions are{

argmin∆p‖h(W(p))− aλ(W(∆p))‖2I−UAUT
A

argmin∆λ‖h(W(p))− aλ+∆λ(W(∆p))‖2
(3)

The minimization in every iteration is achieved by first using a fixed
estimate of λ to compute the current estimate of ∆p and then us-
ing the fixed estimate of p to compute the increment ∆λ. More
specifically, given the current estimate of λ, the shape parameters
increment is computed from the first cost function using the orthog-
onal complement of the appearance subspace ÛA = I − UAU

T
A

as
∆p = H−1JT

AIC [h(W(p))− ā−UAλ]

where JAIC = ÛA[Jā|p=0 +
∑NA

i=1 λiJui |p=0] and H−1 =

JT
AICJAIC . Then, given the current estimate of the parameters

p, AIC computes the optimal appearance parameters as the least-
squares solution of the second cost function of Eq. 3, thus

∆λ = UT
A [h(W(p))− ā(W(∆p))−UA(W(∆p))λ]



(a) Alternating IC (a) Project-Out IC

Fig. 2. Experimental results on the LFPW testing database evaluated on 68 points mask. We use various values for the HOG parameters
(Ncell ∈ {4, 8},Nblock ∈ {1, 2}) and also compare with the intenisities-based AAMs using both the Alternating and Project-Out algorithms.

This alternating optimization is repeated at each iteration. The ap-
pearance parameters are updated in an additive mode, i.e. λ← λ +
∆λ. Although the individual Jacobians Jui |p=0, ∀i = 1, . . . , NA

and Jā|p=0 can be precomputed, the total Jacobian JAIC and the
Hessian need to be evaluated at each iteration. Following the Hes-
sian matrix computation technique proposed in [5], which improves
the cost from O(N2

SLA) to O(N2
SN

2
A) (usually LA > N2

A), the
total cost at each iteration is O(N2

SN
2
A + (NS +NA)LA +N3

S).
Project-Out: The POIC algorithm [4] decouples shape and ap-

pearance by solving Eq. 2 in the subspace that is orthogonal to the
appearance variation. This is achieved by “projecting-out” the ap-
pearance variation, thus, similar to the first problem of Eq. 3, the
solution is computed based on the orthogonal complement of the ap-
pearance subspace ÛA = I−UAU

T
A. The difference with the AIC

case is that there is not an extra step for optimizing with respect to
the appearance parameters. The cost function of Eq. 2 takes the form

argmin∆p‖h(W(p))− ā(W(∆p))‖2I−UAUT
A

(4)

and the first-order Taylor expansion is ā(W(∆p)) ≈ ā+Jā|p=0∆p.
The shape parameters increment is computed as

∆p = H−1JT
POIC [h(W(p))− ā]

where H−1 = JT
POICJPOIC and JPOIC = ÛAJā|p=0. The ap-

pearance parameters can be retrieved at the end of the iterative oper-
ation as λ = UT

A[h(W(p))− ā] in order to reconstruct the appear-
ance vector. The POIC algorithm is faster than AIC, with compu-
tational complexity of O(NSLA + N2

S), because the Jacobian, the
Hessian matrix and its inverse are constant and can be precomputed.

4. EXPERIMENTAL RESULTS

In this section we carry out experiments on three challenging in-
the-wild databases, which consist of images downloaded from the
web that are captured in totally unconstrained conditions and exhibit
large variations in pose, identity, illumination, expressions, occlu-
sion and resolution. We train our HOG-AAM model on 811 training
images of the LFPW [17] training set (the rest of the database’s im-
ages URLs are invalid), keeping NS = 15 eigenshapes and NA =

100 eigentextures. We acquired the groundtruth annotations of 68
points from the 300 Faces In-The-Wild Challenge [18]. The fit-
ting process is initialized by computing the face’s bounding box
using the Cascade Deformable Part Models face detector [19] and
then estimating the appropriate global similarity transform that fits
the mean shape within the bounding box bounds. Note that this
initial similarity transform only involves a translation and scaling
component and not any in-plane rotation. The accuracy of the fit-
ting results is measured by the point-to-point RMS error normalized
by the face size, as proposed in [20]. Denoting the fitted and the
groundtruth shapes as sf and sg respectively and the face’s size as
sf = (maxxgi −minxgi + max ygi −min ygi )/2, then the error is

expressed as RMSE =
∑L

i=1

√
(x

f
i −x

g
i )2+(y

f
i −y

g
i )2

sfLS
.

Comparison between HOG Features Variants: Herein, we
conduct an experiment to compare the performance of HOG AAMs
for various combinations of the parameters values presented in
Sec. 2. Specifically, we use cell size values of Ncell ∈ {4, 8} and
experiment with the employment of block normalization by setting
Nblock ∈ {1, 2}, which results in HOG images with D ∈ {9, 36}
number of channels. Moreover, we compare our HOG AAMs with
the intensities-based AAMs. The experiment is performed on the
224 images of the LFPW testing set. The results are demonstrated
in Fig. 2 in the form of Cumulative Error Distribution (CED). This
experiment proves that the block normalization has a great impact
on the fitting result, while the reduction of the cell size provokes
a small decline on the fitting accuracy. Additionally, HOG AAMs
clearly outperform the intensities-based AAMs. Especially, in the
case of HOGs wich Ncell = 8 and block normalization (D = 36),
the difference is approximately 30% and 40% in the cases of RMSE
less than 0.02 and 0.03 respectively.

Comparison with State-Of-The-Art Methods: In this cross-
database experiment, we compare the performance of our HOG
AAMs against two recently proposed state-of-the-art facial trackers:
Supervised Descent Method (SDM) [7] and Robust Discriminative
Response Map Fitting (DRMF) for CLMs [21]. We utilize the im-
plementations provided online by their authors with their pre-trained
models. Note that both these methods are trained on thousands of
images, much more than the 811 images used to train our AAMs.



(a) Helen Database (a) AFW Database

Fig. 3. Comparison of HOG AAMs with state-of-the-art methods (SDM [7], DRMF [21]) on Helen and AFW databases, evaluated on 49
points mask.

Fig. 4. Fitting examples using HOG-AIC on AFW and Helen images. Top row: Initialization from bounding box. Bottom row: Fitting result.

Method Helen AFW
mean std mean std

HOG-AIC 0.0184 0.0058 0.0215 0.0129
SDM 0.0216 0.0059 0.0484 0.5002

HOG-POIC 0.0300 0.0140 0.0395 0.0212
DRMF 0.0280 0.0086 0.0517 0.0611

Face Detection 0.0532 0.0196 0.0635 0.0227

Table 1. Statistics (mean and standard deviation) of Figure 3 results.

We use the best performing HOG parameters from the previous ex-
periment, thus we set the cell size at 8× 8 pixels and the block size
at 2× 2 cells, ending up with HOG feature images of D = 36 chan-
nels. The testing is performed on the very challenging in-the-wild
databases of AFW [20] and Helen [22] which consist of 337 and
330 testing images respectively. Similar to the LFPW database, we
acquired the groundtruth annotations from [18]. In this experiment
we report results evaluated on 49 points shape mask instead of the 68
points of the previous one. This is because the SDM framework [7]
returns only these 49 points, which occur by removing the 17 points
of the boundary (jaw) and the 2 points from the mouth’s corners.
Thus, this evaluation framework emphasizes on the internal facial
areas (eyebrows, eyes, nose, mouth).

Figure 3 demonstrates the results on Helen and AFW databases
and Table 1 reports the corresponding statistics (mean and standard
deviation of the errors). The results indicate that HOG-AIC signifi-

cantly outperforms both DRMF and SDM and even the less accurate
HOG-POIC performs better than DRMF. Moreover, note that be-
cause the AFW database is more challenging than the Helen one,
the face detection initialization is worse and the performance of all
methods greatly decreases, apart from the HOG-AIC model that pre-
serves its accurate and robust behaviour. Figure 4 shows some in-
dicative fitting results along with the initializations. Given the in-the-
wild nature of the testing databases and the small number of training
images, we believe that this performance is remarkable.

5. CONCLUSIONS

In this paper we present a formulation of AAMs Inverse Composi-
tional fitting algorithm that employs dense HOG feature descriptors.
This allows us to take advantage of the strengths and descriptive
qualities of HOGs in order to achieve efficient, robust and accurate
performance for the task of face fitting. Our experiments on chal-
lenging in-the-wild databases show that the HOG AAMs have the
ability to generalize well to unseen faces and demonstrate invariance
to expression, pose and lighting variations. Finally, we show that our
method outperforms discriminative state-of-the-art methods trained
on thousands of images.
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bano Nunes, “Trainable classifier-fusion schemes: an applica-
tion to pedestrian detection,” in IEEE Int’l Conf. on Intelligent
Transportation Systems (ITSC), 2009.

[17] Peter N Belhumeur, David W Jacobs, David J Kriegman, and
Neeraj Kumar, “Localizing parts of faces using a consensus
of exemplars,” in IEEE Proc. of Computer Vision and Pattern
Recognition (CVPR), 2011.

[18] C. Sagonas, G. Tzimiropoulos, S. Zafeiriou, and M. Pantic,
“300 faces in-the-wild challenge: The first facial landmark lo-
calization challenge,” in Proc. of IEEE Intl Conf. on Computer
Vision (ICCV-W 2013), 300 Faces in-the-Wild Challenge (300-
W), 2013.

[19] J. Orozco, B. Martinez, and M. Pantic, “Empirical analysis of
cascade deformable models for multi-view face detection,” in
IEEE Proc. of Int’l Conf. on Image Processing (ICIP), 2013.

[20] Xiangxin Zhu and Deva Ramanan, “Face detection, pose esti-
mation, and landmark localization in the wild,” in IEEE Proc.
of Computer Vision and Pattern Recognition (CVPR), 2012.

[21] Akshay Asthana, Stefanos Zafeiriou, Shiyang Cheng, and
Maja Pantic, “Robust discriminative response map fitting with
constrained local models,” in IEEE Proc. of Computer Vision
and Pattern Recognition (CVPR), 2013.

[22] Vuong Le, Jonathan Brandt, Zhe Lin, Lubomir Bourdev, and
Thomas S Huang, “Interactive facial feature localization,” in
European Conf. on Computer Vision (ECCV). 2012.


