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Tracking Deformable Parts via Dynamic
Conditional Random Fields

Suofei Zhang, Zhixin Sun, Xu Cheng, and Zhenyang Wember, IEEE

Abstract—Despite the success of many advanced tracking also exists in other state-of-the-art work in the commuifély
methods in this area, tracking targets with drastic variation although here we track the whole target as well as deformable
of appearance such as deformation, view change and partial parts simultaneously.
occlusion in video sequences is still a challenge in practitappli-
cations. In this letter, we take these serious tracking prolems into
account simultaneously, proposing a dynamic graph based ndel
to track object and its deformable parts at multiple resolutions.
The method introduces well learned structural object detetion
models into object tracking applications as prior knowledg to
deal with deformation and view change. Meanwhile, it expligly
formulates partial occlusion by integrating spatial potertials and
temporal potentials with an unparameterized occlusion hadling
mechanism in the dynamic conditional random field framework
Empirical results demonstrate that the method outperformsstate-
of-the-art trackers on different challenging video sequences.

Index Terms—object tracking, conditional random field, de-
formable part based model @ (b)

Fig. 1. (a) The graph based models with pre-defined spatilteamporal
potentials between vertices over frames. (b) Trackingliesfi pedestrian and
ISUAL tracking plays an essential role for many highegar. Our method tracks not only the target, but also its ietgarts.

level understanding of video contents such likeffica
surveillance, analysis of human behaviours and interastio The proposed tracking framework in this letter consists of
between targets of interest, etc. During the past decaggveral components which correspond to specific views of
some quite ficient object tracking method$1[1][1[2] haveobject. As shown in Figurel]1, each component is a Dy-
been widely distributed in various applications. HoweveRamic Conditional Random Field (DCRE) [7] over consecutive
designing a robust tracking algorithm for realistic task igames to describe the details of objects offedent resolu-
still a major challenge. The problems arise not only froffions. Each vertexin the graph is connected with its spatiall
intra-class variation of appearance caused by deformation temporal neighbors by pre-defined pairwise potentials hic
Viewpoint Change’ but also from partia| occlusion and ehattl formulate the deformation of Object. On bottom of that, a
background, etc. pyramid based representation of imadgkeetively handle the
For deformation and viewpoint change, recently, reseaschélumination and scale change of target over frames.

tend to address the problem with online learning method toFor partial occlusion in cluttered background, part based
update the target modéll[3].1[4]. Such methods provide an épodels have yielded attractive results in recent progréss o
fective way to handle universal tracking problems by adhigv object tracking[[8], [[9], [[1D]. A series of solutions attetrgp

a synergy between tracking and recognition. However, fst véParse representation of objects [9]./[11] to track partaifet
majority of common objects in daily life, e.g., pedestrimamsl and thus handle partial occlusion problemsfi@ing from
vehicles, the object tracking by human eyes actually faflovihese decomposition based methods, our method can ohginal
the recognition of target at the first glimpse. The leverafje gescribe the status that some parts are absent from siglet whi
massive experience in this recognition process brings-high hypothesis of object is still credible due to other observe
level auxiliary knowledge to handle various problems irckra Parts, and thus can handle occlusion more directly and fiexib
ing. Motivated by this intuition, we propose to track obfeeia ~ The main contributions of this work are threefold: (1)
high performance object detection models, Deformable P#¢¢ integrate high performance object detection method with

based Models (DPMs)[5], in this letter. The similar insgipa  dynamic graph based model, implementing #icient object
tracking with structured outputs; (2) we propose some novel
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detection results with
specific thresholds

Il. DErFORMABLE ParT BASED MoODEL scores at locations

DPM has been proven as quitffextive model to formulate
the significant intra-class variation of objects in chadiey
object detection problems. A representation of object bWDP
can be considered as a mixture ®fstar-shaped Conditional CH
Random Fields (CRFs)[12] as components. Each companen
consists of one root pary andn deformable partsq, . . ., X,)
as vertices of graph. The unary potential of vertexdn
which models the part appearance, is the output of Histograi
of Oriented Gradients (HOG) featurggH, x;) filtered by a
template functiorfy,, whereH is the HOG feature pyramid,

j € 0,...,n. The pairwise potential between root and part,
which models the deformation, penalizes the displacemgnt occlusion hand“ng
of part from the anchor position of trained model with a

Flg 2. Difference between detecting with and without occlusion hagdBy

Gaussian |_(em_e| parameterized by a four tuﬂle using unparameterized logistic regression and four recended candidates
By consideringg(H, xj)s andvij as input, as well aExiS of X, it is easy to observe that more noises along with possibteeco
anddys as parameters, we can realize the CRF output fraiypotheses can be exploited by a rational threshold.

the perspective of linear perceptron:

¥(H,c) = (Fxo,---ann,dxo,---,dxn,bC)T Figure[2. It has been proven that such limited choices are
(B(H. X0). - .-, (H, X0, vy oy 1), 1) represenfcanve enoygh in mpst practical scenarios [13]. Fo
more universal object tracking problems, a simple greedy
whereb is often termed as bias constant in this context. Thearch algorithm can be employed here to add parts Xgto
correspondence between CRF and linear perceptron leadsdquentially with trivial overhead of computation.flring
a Support Vector Machine (SVM) based training frameworkom the parameterized logistic regressionlin [13], ourhodt
in [S]. The dficacy of DPM arises from 3 building blocks: (1)directly projects the output of SVM from-¢o, +0) to (0, 1)
the HOG pyramid handles the illumination and scale chang&#thout any requirement of training stage. Such simplemior
(2) the mixture model takes multiple views of objects intgation is more flexible in various realistic tracking applions.
account simultaneously; (3) The deformation penalty whighrom an empirical analysis as shown in Figldre 2, our proposed
is formulated by pairwise potentials in CRF tackles norerig occlusion handling strategy actually introduces noisds in
deformations and intra-class variation in shape directly.  final detection results of DPM. However, it is still very
promising since it compresses the distribution of DPM sgore
I1l. OccLusioNn HANDLING and allows some parts of object contribute to the resultigqua

Despite the great success that DPM has been witnessedsithe whole star-shaped model.
has been reported that detecting partial occluded objeitts w
DPM remains a challenging problefin [13]. In this letter, we
propose a similar but morefficient strategy to that of [13] A- Dynamic Conditional Random Field
to handle the partial occlusion problem. From Eg. 1, one canDCRF was proposed in][7] to implement an accurate fore-
see that in the CRFE of DPM, the scor€Xx;) related to each ground segmentation in video sequences. Here we introduce i
vertex can be computed separately as into object tracking by integrating it with pre-defined putial

functions from DPM. DCRF models the states of two random
scorgx;) = (in’dxi)T(¢(H’ X): Ux)- ©) fields s and ;1 over consecutive frames via Bayes’ rule:

IV. TrackiNG via Dynamic ConbrrioNaL RaNnpoM FIELDS

By using logistic regression over the SVM outmaorex;) 1
on every vertex[[14], we can model the probability of the P(St+1l01t41) = Zp(0t+l|3t+l)z P(st+1ls) P(stl014), (5)
&

hypothesis that a vertex appears at current itg) as
whereZ is the partition function. Since indicates a random

P(S(X})|Fy;, dy,) = exp(scorgx;)) ) (3) field which containgX| vertices here, to enumerate all possible
1+ exp(scorgXx;)) states ofs in Eq.[8 is intractable. Inspired by the derivation

If an object is partially occluded, aggregating the scores th [7], we attempt to restrict the problem to every singleterr

all partsX = Xo, ..., X, as in conventional DPM is apparentlyin s.

unsuitable. Therefore we only select a sub&et {X, . . ., X} According to the Markov property and Hammersley#olid

of parts fromX, finding the optimalX;: to maximize the mean theorem, the state transition probabiljt{s.1|s) in Eq.[5 can

of normalized scores of vertices K. as follows: be given by a Gibbs distribution as follows:
‘ﬁ (H c, xc) - maX D(S(Xj)Iin, de)' (4) p(3t+l|3t) & exp{ Z [Vx(5t+l(x)|5t(Mx))
|Xcl = XeX
For common pedestrian tracking, similar {0 ][13], we only + Z VXy(SHl(X),SHl(y))]}, (6)
take four possible subsets of parts into consideration as in el ’
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where x and y are vertices in the graph. The temporal

neigborhoodVl, denotes the vertices at ttte frame which can =~ o " ommion oossy || 08 Trmom
impactx at the ¢+ 1)th frame, and the spatial neighbourhood .,  DoRFOH 08101 £ 0 Moz
Ny refers to the spatially related vertices at the same fram —Our method (0.810)

Precisi

0.4

to x. Here s(My) stands for the state of neighboring vertex

{ss(¥)ly € My}, V() andVy, () are clique potentials related to  ©°2 oF | T
the VerteXX . 00 10 20 30 40 50 OOL(:/, 10 20 30 40 50
Due to the star shape of DPM, the adopted graph model i Threshold (px) Threshold (px)

(a) (b)
our proposed DCRF framework retains a facile structure. The

postgnor d|str|bu.t|onp(s[|01;t) for a site at thetth frame can Fig. 3. Quantitative comparisons oftidirent tracking methods on “Woman”
be directly factorized as sequence: (a) performances of our method witiectnt configurations, (b)
performances of other leading methods and our proposedoheth
p(silor) = [ | p(s:(l01(3). (7)

XeX

With similar conditional independence assumption/[in [7flirect prior knowledge about current part from last frame is
the observation modab(o1/s.1) the can also be evaluatedabsent, we keep the temporal connectivity with thi€edénce

by product of likelihoods of vertices: of part deformation instead. It implies that if the pose of
object changes drastically over frames, the final trackasyit
P(Ocs1lSi+1) = ]_[ P(0r+1(X)St+1(X))- (8) should be biased more on observation model rather than prior
xexX knowledge.
Combining Eq[b[I6[17 and 8 with Jensen’s inequality, we
can approximate the lower bound pfs.1/011,1) at current V. EmpiricAL REsuLTs
site as We empirically testified the proposed graph model based

tracking framework with three experiments. In experimawvgs
l_[ eXp{[VX(O”l(X)lS“l(X)) + Z Viy(S2(¥), S‘+1(y))] adopted the DPMs trained for PASCAL VOC 2009][15], which
xex yeN contain six components consisting of nine deformable parts
scorgx) The algorithm is initialized by detecting the optimal windo
1 which overlaps with ground-truth by at least 70% at the first
My Z ZVx(s[+1(x)lst(y)p(s[(y)lol;t(y)))}. ©) frame. Only related HOG features at neighboring levels in
yeMs) pyramid are extracted for tracking. This configuration i@pl
Here we only consider corresponding vertex at previousérarthat the éiciency of our method is decided by both shown
as in Figure 1L, s¢My| = 1, Si(y) can be simply replaced by object size as well as image size. Zooming in frames of video

St(X). As shown in Eq[B, the summation of unary potentialgirectly will not bring any impact to the speed of tracking.
V- and pairwise potential¥y,(-) at every vertex corresponds

to the output of DPMscorgx). Therefore, the equation has 8z From Detection to Tracking

very clear explanation: the local energy on a vertex of DCRF _. . . o .
Since tackling long-term partial occlusion is a main concer

consists of DPM score as observation, temporal potential .as, . .
o . . . in“this letter, we carefully evaluate the influences of prgIb
transition function, and result from previous frame as st

N . . novel occlusion handling mechanisms in this section. A-chal
distribution. Since each vertex only has two possible StatFén ing video sequence, the “Woman” sequerice [8], is used
s(X) € {0, 1}, which indicate whether it occurs, Eg. 9 can b ging q ' 9 ' :

computed very iciently especially in the logarithmic form fo evaluate the performances of fouffdrent configurations:
P y y esp y 9 " detection by DPM directly (DPM), detection by DPM and oc-

clusion handling (DPMOH), tracking by DCRF merely with
B. Temporal Potential Function Gaussian kernel in Ef110 (DCRF), and tracking with complete
To model the status that the object is partially occluded, wemporal potential function (DCRFOH). Since there is no
propose a novel transition functiarn(s.1(X)|s(X)) to impose tracking failure problem for detection methods, we folldve t
the temporal connectivity between same parts ovéieint evaluation protocol proposed byi [3] in Figdre 3.
frames. It is easy to observe in Figurgl 3(a) that the proposed
tracking method brought significant improvement to DPM
Vi(s()Is) = G(x-y: %) - 6(sa(x) - s(y) (10)  pased detection, despite that using unparameterizedseolu
+ (1 - 6(st:1(%) — (). handling actually leads to worse result. Note that trackiith
1+ elexul? DCRF without occlusion handling achieved a desirable tesul
The proposed temporal potential ensures the consistency &ethe beginning of the sequence. However the method failed
tween neighboring vertices. If the pattis assumed to be ob-to follow the target around frame #125, where a long-term
served at last frame, a normalised Gaussian ke@(el-y;X) partial occlusion occurs, and finally leaded to mitigatesute
is adopted to measure the motions of object. HErés a An implementation with MATLAB on a Pentium 3.3 GHz
three-dimensional covariance matrix constraining theectbj CPU can process one frame in 0.7 second on this sequence,
into a relevant range on HOG feature pyramid. Otherwisehich is relatively much faster than detecting directly5(2.
if the part is assumed to be occluded, which means tkecond per frame).
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Fig. 4. The performances of various methods on two video esetps
measured by center errors. (a) “Woman” sequence, (b) “Caeduence. Fig.
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5. Qualitative tracking results over representativamies of two

sequences. Images in the first row are frames #20, #155, #200#450
from “Woman” Sequence. Images in the second row are frame8, #1208
and #480 from “Car 4" sequence.

B. Comparison on “Woman” Sequence
We also compared the performance of our proposed method

with other leading tracking methods on the “Woman” Sesurrent system to multiple target tracking by integratirtigen
quence. We took several representative state-of-the-gitti-m visual cues to discriminate targets from each other.

ods into account, i.e., Frag trackér [8], SRPCA tracker [9],
IVT tracker [4] and MIL tracker [[B]. It can be observed
from Figure[4(a) that only our method successfully followed
the pedestrian through the whole “Woman” sequence, while
other methods drifted away for various problems. It has bee!
reported that the Fragment based tacker [8] can follow the
target by initialising at frame #69 since it is specifically[2]
designed for handling long-term occlusion. However, from
Figure[® one can see that the method failed to follow th?s]
target from the beginning of the sequence due to the serious

scale change during frame #1 to frame #69. ”

C. Comparison on “Car 4" Sequence 5]

In the last experiment, we evaluate our method on the “Car
4" sequence[]4], which contains some serious illumination
and scale variation. The algorithm can process one framg
of this sequence around 0.4 second. We illustrate the center
errors of diferent methods in Figufd 4(b). The Frag and MILm
methods failed to follow the car since they are lack fiéetive
mechanism for handling scale change. Our proposed method
has no problem to track the target, however SRPCA and IVT
methods show more accurate results than ours. As shown
the last instance of Figuifd 5, our method meets some trivial
problems for accurately evaluating the correct comporgent
of target, which leads to small drifts of tracking resultse W [9]
would like to introduce prior knowledge of component from
previous frames to solve this weakness in future work. [10]

(11]
VI. CoNcLUSION

In this letter, we propose a novel model based tracking;
method which exploits the high performance DPM in a DCRF
framework. By utilising suitable temporal potential fuiocts, [13]
the method can simultaneously handle challenging problems
in tracking tasks such as variation of illumination, scale,
perspective, drastic shape deformation and partial occiugr  [14]
future work, we plan to improve thefeeiency of the method
with a C++ implementation. We also would like to extend
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