
GRAPH MBO METHOD FOR MULTICLASS SEGMENTATION OF HYPERSPECTRAL
STAND-OFF DETECTION VIDEO

Ekaterina Merkurjev † Justin Sunu ? Andrea L. Bertozzi †

? Department of Mathematics and Statistics, California State University, Long Beach, USA
† Department of Mathematics, University of California, Los Angeles, USA

ABSTRACT
We consider the challenge of detection of chemical

plumes in hyperspectral image data. Segmentation of gas
is difficult due to the diffusive nature of the cloud. The use of
hyperspectral imagery provides non-visual data for this prob-
lem, allowing for the utilization of a richer array of sensing
information. In this paper, we present a method to track and
classify objects in hyperspectral videos. The method involves
the application of a new algorithm recently developed for
high dimensional data. It is made efficient by the application
of spectral methods and the Nyström extension to calculate
the eigenvalues/eigenvectors of the graph Laplacian. Results
are shown on plume detection in LWIR standoff detection.

Index Terms— classification, tracking, MBO scheme,
Nyström extension method, hyperspectral data

1. INTRODUCTION

Detecting chemical plumes in the atmosphere is a problem
that can be applied to many areas, such as defense, security
and environmental protection. If the airborne toxins are iden-
tified accurately, one can combat the use of chemical gases as
weapons, prevent fatalities due to accidental leakage of toxic
gases and avoid contamination of the atmosphere. Identifi-
cation of harmful gases with high fidelity is needed to pro-
vide warnings in threatening situations. In these grave scenar-
ios, it is crucial to accurately track the diffusion of dangerous
plumes into the atmosphere. Laboratory measured signatures
of toxic chemicals are available to assist in chemical plume
identification. However, testing and training data is not read-
ily available due to the inherent danger of these real world
situations. Instead, open air testing with surrogate chemicals
is conducted to study the diffusion of chemical plumes. The
developed plume detection methods must meet strict require-
ments to ensure the fidelity of a detector.

We propose applying the method outlined in [1] to hy-
perspectral data, in particular, to track and classify chemical
plumes, recorded in a hyperspectral video sequence. The pix-
els of the images in the video are considered as vertices in
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a graph, and we minimize the total variation with fidelity to
known data. The Nyström extension method is used to effi-
ciently calculate eigenfunctions of the graph Laplacian. They
are then used both for operator assisted assignment of fidelity
values and in the actual total variation minimization algorithm
itself. The paper is organized as follows: section 2 reviews the
graph representation of the data as well as the Nyström exten-
sion method, section 3 presents the method and the results,
and the section 4 contains the conclusions.

We consider the data set, described in more detail in
[2], composed of video sequences recording the release of
chemical plumes at the Dugway Proving Ground. The data
was provided by the Applied Physics Laboratory at Johns
Hopkins University. The images are of dimension 128 ×
320 × 129, where the last dimension indicates the number of
channels, each depicting a particular frequency from 7,820
nm to 11,700 nm, spaced 30 nm apart. The sets of images
were taken from videos captured by three long wave infrared
(LWIR) spectrometers, each placed at a different location
about 2 km away from the release of plume at an elevation
of around 1300 feet. One hyperspectral image is captured
every five seconds. This data set has been studied in other
works such as [3], [4], [5]. Prior work on hyper spectral
plume detection using other sensors includes [6] (MWIR)
and [7] (HYDICE). This paper is the first example of the new
graphical MBO scheme applied to standoff detection data.
The results are excellent compared to prior work in this area.

There are many challenges to be faced when tracking
chemical plumes. One obstacle faced by the authors of [3] is
the significant preprocessing needed to accurately detect the
plume. Due to the noisy structure of the data set, principal
component analysis reduced the data to three main features
used to produce a false color video sequence of the plume re-
lease, followed by midway equalization to smooth the flicker
between frames. Similar preprocessing is used in [4], which
outlines a novel plume detection method involving a binary
partition tree. The advantage of our method is that it does
not require any preprocessing of the hyperspectral data; we
use the raw data organized in a graph setting. Moreover, as
pointed out in [4], the ground truth data is nonexistent, since
surrogate chemicals, instead of the toxic ones, are used in
testing. This makes the assessment of the results somewhat
difficult. The authors of [3] dealt with this problem by using



an adaptive matched subspace detector (AMSD) described
in [7] to benchmark their spectral clustering results. AMSD
is a probabilistic detection scheme that uses a generalized
likelihood ratio test to choose between two hypotheses: target
present or absent.

2. GRAPHICAL REPRESENTATION OF THE DATA
AND EIGENVECTOR COMPUTATION

Graph-based methods often use the discrete Laplace op-
erator to exploit underlying similarities in the data set. For
example, the approach of spectral clustering involves the cal-
culation of the eigenvectors of the graph Laplacian, which are
then used to segment the data.

We represent the data as nodes in a weighted graph, with
each edge assigned a measure of similarity w(i, j) between
each pair of vertices it is connecting. Let W be the matrix
Wij = w(i, j), and the degree of a vertex i ∈ V be de-
fined as di =

∑
j∈V w(i, j). If D is the diagonal matrix

with elements di, then the graph Laplacian is expressed as
L = D−W.

Papers, such as [8], [1] and [9] observe that a scaled graph
Laplacian is computationally a better choice in the case of
large same size. To make use of efficient numerical linear
algebraic methods, we implement the symmetric operator

Ls = D−
1
2 LD−

1
2 = I−D−

1
2 WD−

1
2 . (1)

We wish to form a graph that utilizes information inher-
ent in the data over time, so a method of utilizing data from
multiple time steps was implemented. This method of per-
forming multiframe analysis is done by selecting k different
video frames and then concatenating the data points, allowing
for data to be associated over these k frames. The compu-
tation of the graph Laplacian for all of these pixels results
in a very large matrix. As an example, the Dugway Proving
Ground hyperspectral data is of size 128 × 320 pixels with
129 spectral bands. For seven frames, the full graph Lapla-
cian is a square matrix of length 36,986,880. Thus, a method
for quickly computing eigenfunctions of the graph Laplacian
is desired. Utilizing the Nyström method, we are able to
quickly compute an accurate approximation to the eigenfunc-
tions. The Nyström method was formed to approximate the
eigenfunctions of the graph Laplacian without the hassle of
computing the full Laplacian. This is done by obtaining a
small sample set from the data and performing matrix com-
pletion that utilizes properties of eigenfunctions to complete
the Laplacian. The algorithm described in [10] and [5] is:
1) Randomly select k data points to form the set A, while the
rest of data forms the set B consisting of n data points. The
best utilization of Nyström has n >> k, so the sample set is
much smaller then the rest of the data.
2) Compute distances amongst data in A, named DA and
distances between data in A and B, named DB .

3) Approximate the distances amongst data in B, DC , with
DC = D′BD

−1
A DB . Thus, the approximate graph Laplacian,

L, is given by L =

[
DA DB

D′B DC

]
, where D′B denotes DB

transpose.
4) Compute the row sum of the matrix L, where di =∑n

j=1 Li,j .
5) Normalize the elements of DA and DB , named DA and
DB , respectively.
6) Setting Q = DA + DA

−.5 ∗DB ∗DB
′ ∗DA

−.5
, find the

singular value decomposition, Q = USV ′.

7) Compute V =

[
DA

DB
′

]
DA
−.5

UL−.5

8) Compute the eigenvector approximationEig = Vi

V1i(1−Lii).5

Figure 1 shows a sampling of four different eigenvectors.
Note that each eigenvector highlights a different aspect of the
image; for example, the third eigenvector outlines the plume.
In addition, the background is maintained through the seven
different frames. The total run-time for the Nyström exten-
sion with 100 eigenvectors is less than one minute on a 2.8
GHz Intel Core 2 Duo. Below we use these eigenvectors for
two parts of our multi-class clustering algorithm.

3. MBO CLUSTERING OF HYPERSPECTRAL DATA

In [1], an algorithm is developed to efficiently solve the
multiclass assigment problem for graph-based data sets. It
is semi-supervised and thus needs “ground truth” assigments
for part of the data set. Since we lack real ground truth, we
perform operator assisted spectral clustering to obtain partial
ground truth. This is performed by identifying the relevant
eigenfunctions and thresholding at some level to identify a
subset of pixels that are highly likely to be part of the chosen
class. For this segmentation we choose four classes: plume,
sky, foreground, and mountain. We denote the class label vec-
tor as the matrix u. The node i adopts a composition of states
ui ∈ RK . Here K = 4 for four class segmentation. The kth

component of ui is the probability the node belongs to class
k. For each node i, we require the vector ui to be an element
of the Gibbs simplex ΣK , defined as

ΣK :=

{
(x1, . . . , xK) ∈ [0, 1]K

∣∣∣∣∣
K∑

k=1

xk = 1

}
. (2)

Vertex k of the simplex is given by the unit vector ek.
It is shown in [1] that alternating between the following

two steps results in an efficient classification algorithm:

1. Heat equation with forcing term:

un+ 1
2 − un

dt
= −Lsu

n+ 1
2 − µ(un − û). (3)

2. Thresholding:
un+1
i = ek, (4)



(a) 2nd Eigenvector (b) 3rd Eigenvector (c) 4th Eigenvector (d) 5th eigenvector

Fig. 1: Eigenvectors of the symmetric normalized graph Laplacian (1) for the 7 video frames shown in false color.

where ek is the vertex in the simplex closest to the pro-
jection of u

n+ 1
2

i onto the simplex using [11].

Here µi is a positive constant µ if node i’s label is known
beforehand (fidelity point) and 0 otherwise, and ûi is a vector
indicating prior class knowledge of sample i. Also, note that
in the second step the row vector ui

n+ 1
2 of step 1 is projected

back to the simplex before any thresholding takes place. This
is done because the result of step 1 is not necessary an ele-
ment of the Gibbs simplex. As discussed in [8] and [1], the
method is the MBO scheme for classification motivated by
the following variational problem:

min
u∈Σk

|u|TV +
µ

2
||u− û||2, (5)

a least squares fit to the known “ground truth“ data and total
variation term that minimizes the length of the graph cut.

Scheme (3) is solved using the eigenvalue/eigenvector de-
composition of the symmetric graph Laplacian. The Lapla-
cian term is treated implicitly. The first part of the algorithm

can be rewritten as

un+ 1
2 = (I + dtLs)−1(un − dtµ(un − û)). (6)

We use the eigendecomposition Ls = XΛXT to write

I + dtLs = X (I + dtΛ) XT , (7)

but we approximate X by a truncated matrix retaining only
Ne eigenvectors (Ne � ND), to form a matrix of dimension
ND × Ne. The term in the parenthesis in (7) is a diagonal
Ne × Ne matrix. This allows one to calculate un+ 1

2 rapidly.
In particular, we write, for the nth iteration, un = Xan and
µ(un − û)) = Xdn, where a and d are matrices of dimen-
sionNe byK, whereK is the number of classes. Denote E to
be the diagonal matrix containing the eigenvalues of the sym-
metric graph Laplacian, then Lsu

n = XEan. Also denote
by ak and dk the kth row of a and d, respectively. Plugging
all the known expressions into (3), we obtain an equation for
an+1
k that effectively replaces (3):



(a) Background Frame (b) Gas Frame 1 (c) Gas Frame 2 (d) Gas Frame 3

Fig. 2: First 4 frames of the hyper spectral video: (top row) operator assisted ‘ground truth’ results from spectral clustering
- used as fidelity points in the MBO clustering algorithm; (bottom row) initialization for the MBO scheme. Classification is
denoted by color: green = mountain; blue = sky; brown = foreground; orange = plume. White pixels denote unclassified pixels.

(a) Background Frame (b) Gas Frame 1 (c) Gas Frame 2 (d) Gas Frame 3

Fig. 3: First 4 frames, Results of the MBO classification algorithm. Color as specified in figure 2.

an+1
k =

an
k − dtdn

k

1 + dtλk
(8)

where λk is the kth eigenvalue of the symmetric graph Lapla-
cian. The remaining step is simple thresholding.

We tested our method on seven video frames, using four
classes, to segment the plume, sky, foreground and mountain.
The fidelity region is shown in the first row of figure 2. The
initialization for the MBO scheme is displayed in the second
row. The final segmentation results, after 17 iterations, are
shown in figure 3, using first four frames.

The fidelity region is calculated differently from [1],
where the fidelity points were chosen randomly from known
ground truth data. Without the ground truth, we use an
operator assisted method involving spectral clustering. In
particular, by thresholding appropriately the values of eigen-
vectors, one obtains information about a particular class. For
example, as shown in Figure 1, the third eigenvector provides
information about the plume. By thresholding its values, one
can find the pixels that are most likely part of the plume. We
used the fifth eigenvector to obtain fidelity for the mountain,
and the second one for both the sky and the foreground. This
process resulted in 36% points of the overall points from all
the frames identified as as good fidelity points.

For the MBO scheme, we start with an initialization of
randomly chosen phase classes for non-fidelity points and the
“ground truth” value for the fidelity points. The MBO iter-
ation was performed 17 times using a stopping criterion for
convergence, with dt = 0.1 and µ = 100. We compared

results with 10 to 100 eigenvectors; they deteriorated with
less than 10 eigenvectors but were similar with more than 10
eigenvectors. In all tests we used the same operator assisted
fidelity points. The MBO iteration took around 11 seconds
(for 100 eigenvectors) on a 2.4 GHz Intel Core i2 Quad, after
obtaining the eigenvectors from the Nyström scheme.

4. CONCLUSION

We presented an application of a recent multiclass classi-
fication algorithm [1] to hyperspectral video data. We use the
Nyström extension method to efficiently calculate the needed
eigenvectors. This implementation of the algorithm requires
an operator assisted spectral clustering preprocessing step to
identify a subset of pixels denoted as “ground truth” for the
four classes. The resulting classification of chemical plumes
and background pixels are excellent. Only a small number
of eigenvectors, ten in particular, is needed to achieve a good
result and no preprocessing is necessary. The entire process
took about a minute on desktop PCs.
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