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ABSTRACT

In this paper, we propose a Generalized Kalman Filtered
Compressive Sensing (Generalized-KFCS) framework to re-
construct a video sequence, which relaxes the assumption of
a slowly changing sparsity pattern in Kalman Filtered Com-
pressive Sensing [1, 2, 3, 4]. In the proposed framework, we
employ motion estimation to achieve the estimation of the
state transition matrix for the Kalman filter, and then recon-
struct the video sequence via the Kalman filter in conjunction
with compressive sensing. In addition, we propose a novel
method to directly apply motion estimation to compressively
sensed samples without reconstructing the video sequence.
Simulation results demonstrate the superiority of our algo-
rithm for practical video reconstruction.

1. INTRODUCTION

Most natural signals have sparse representations when ex-
pressed in some certain basis. For such a signal, Compressive
Sensing (CS) [5, 6] enables an sub-Nyquist approach to re-
cover the whole signal with a limited number of random linear
projections. CS is thus attractive for applications with high
data acquisition cost, e.g., imaging at non-visible wavelengths
[7, 8] and sampling in wireless sensor networks [9, 10].

The problem of reconstructing time sequences of spatially
sparse signals arises in many applications including taking
video using a CS camera (e.g., a single pixel camera [11]),
real-time Magnetic Resonance Imaging (MRI) [7], and chan-
nel equalization in communications [12]. For the video ap-
plication, applying CS at each time separately is the most
straightforward method. It can be performed online and has
low-complexity, but the high temporal correlation present is
not exploited by a conventional CS process. An alternative
approach is to treat the whole video sequence as a single 3D
signal and apply batch CS processing [7, 13]. However, it not
only significantly increases the computational complexity, but
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also causes delays as the reconstruction is not performed until
the projections for the sequence have been gathered.

In [1], Vaswani considers casual and recursive recon-
struction of time-varying sequence and proposes a method
known as Kalman Filtered Compressed Sensing (KFCS). She
assumes that the sparsity pattern of the signal changes slowly
over time, and the idea is to apply CS on the Kalman filtered
residual. When this assumption holds, the signal residual
is more sparse than the original signal, and thus better re-
construction performance is achieved. In [2] the work is
extended to a practical MRI sequence, which is nearly sparse
(compressible), rather than ideally so. The work in [3] is also
related but focuses more on exact reconstruction using fewer
noiseless measurements, and the extension for the noisy case
is demonstrated in [4]. Other work employing side informa-
tion from key frames to improve the current reconstruction
includes [14, 15] and other reweighting based work including
[8, 16].

Vaswani’s approach has been shown to be successful in
many applications where the support of the signal changes
slowly in time, e.g., the MRI case [2]. However, in many
practical video sequences, the support of the signal changes
much more rapidly than for the MRI sequence so that the as-
sumption underlying KFCS is not valid. In this paper, we
propose a more general framework where the assumption of
only a slow change of signal support is not necessary. The key
to relaxing the assumption used in KFCS is the use of Motion
Estimation (ME) which has been widely used for video com-
pression [17]. In addition, we also propose a novel method to
directly estimate motion from the subsamples of a video se-
quence without first recovering the video. Simulation results
show that the proposed approach outperforms the state-of-art
approaches.

2. PROBLEM FORMULATION
As in a conventional CS setting, we sample a time sequence
of T sparse signals via:
yi=Pixt e =P Us; +e; = Aysp +e, (1)

where ¢ = 1,...7T is the time index of each frame, x; € RN
is the ¢-th signal, y; € RM (M < N) is the ¢-th observation



vector, e; € RM is a noise term, ®; € RM*¥ represents the

sensing matrix, ¥ € RV*¥ is a sparsifying basis, s; € R
is the sparse representation which has only K (K < N) non-
zero coefficients and A; = ®,;W is the equivalent projection
matrix.

To recover the sparse representation s; from y; is an ill-
posed inverse problem. However, CS asserts that we can solve
the problem with an overwhelming probability of success if
A, satisfies the Restricted Isometry Property (RIP) [18]. It
has been shown that the RIP is satisfied for various matri-
ces, such as an i.i.d. Gaussian matrix or a Bernoulli matrix
[19]. However, in the sampling process when using such ma-
trices with an image, one has to explicitly use all the pixels,
although the number of measurements needed will appear to
be reduced.

Another technique called random sampling [9, 20], in
which only a small, uniformly distributed, randomly chosen
fraction of the coefficients is captured, can help to achieve
simpler implementation in hardware. The entries of such a
sensing matrix ®; € RM*N are all zeros except for M en-
tries with the value of one in M different columns and rows.
Applying such a sensing matrix for images is effectively
taking M pixels at random.

The CS reconstruction for the noisy case as in (1) can be
formulated as a Basis Pursuit De-Noising (BPDN) problem:

ming, 31y~ Asillg Il @
where v > 0 is a regularization parameter which determines
the tradeoff between sparsity and data consistency. A conven-
tional CS approach is to apply (2) for each frame in the time
sequence. But this is inefficient because it completely ignores
the temporal correlation between frames. In this paper, we
propose to combine the use of ME and a Kalman Filter (KF)
to effectively exploit the dependencies between frames for CS
captured video sequences.

3. PROPOSED METHOD

Our proposed method uses the framework shown in Figure
1. The CS measurements y, are first pre-processed to deter-
mine an initial current frame X ;»;. Then ME is carried out
between X, ;,; and the reconstructed previous frame x;_1,
which yields a transition matrix F; for implementing a KF.
When ¢ = 1, x;—; comes from the result of performing
conventional CS. The output of a KF, s; xr, together with
residual-based BPDN or Modified BPDN [4], is used to de-
rive the reconstructed images. This section will discuss in
detail each of the main modules.

3.1. Motion Estimation for CS Captured Video

ME is a core step in traditional video coding. For an overview
of ME techniques we refer to [17], and we observe that the
most popular ME method is the Block Matching (BM) algo-
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Fig. 1. Framework for Generalized-KFCS

rithm. The idea is to divide the current frame into small macro
blocks and then each block is compared with the correspond-
ing blocks in a searching window in the previous frame. The
best match is determined based on cost function criteria. A
Motion Vector (MV) is then created to describe the move-
ment from the position of the current block to that of the best
matching block.

There is one barrier to utilising ME in our work. In con-
trast to the traditional video coding problem, full resolution
frames are not available for CS captured video. To deal with
this problem, [8] proposes to do a coarse reconstruction first
and then apply ME to this intermediate resolution frame. To
derive the transition matrix F', ME based on low resolution
frames is carried out in [21]. To the best of our knowledge,
there is no existing ME algorithm that can be applied directly
to the subsamples obtained by CS. Here, for the random sam-
pling strategy, we propose a method of direct ME from sub-
samples without performing any reconstruction beforehead.

To do BM on CS captured video, we need to pre-process
the subsamples as follows: 1) allocate each sample to the orig-
inal index (indices are available from the measurement matrix
®), 2) pad the image frame with a negative constant w at each
position with a missing pixel. Then if we represent the padded
current frame X.,,,- and the previously reconstructed reference
frame x,.; as matrices, the BM algorithm can be applied to
them using a modified method for computing the cost func-
tion. Specifically, we divide x.,, into m blocks and denote
the set of pixel indices in each block as 5,,. Then we cal-
culate the Mean Absolute Difference (MAD) [8] over each
block B,,, as follows:

MAD(d,,) = Y D(p,dum), 3)

pPEBm
where p is the paired pixel index in B,,, d,, is a MV for the
block, and D is the function to calculate the pixel difference
value for each index p. The d,, that minimizes MAD(d,,)
is taken as the MV for the current block. The function D is

defined as: '
D(p, dor) = {xmﬂp +dn) = Xeur(P)l, if Xeur(p) > 0
0, elsewhere,

)
where x,.. s (p + d,,,) denotes the pixel value in X, ; with the
index p + d,, and x.,,,-(p) represents the pixel value in X
with the index p. However, note that this method of direct
ME is only applicable for subsamples obtained using the ran-
dom sampling strategy. For other sampling strategies, e.g.,
Gaussian sampling, all the pixels are mixed together as linear
combinations. Therefore, the pre-process step needs to be an
initial BPDN, which provides us with a coarse reconstruction
result to which the original BM algorithm can be applied.



3.2. Motion Estimation Enhanced Kalman Filter

The KF [22] is one of the most popular data fusion algorithms.
It offers a way to exploit the temporal correlation and recur-
sively estimate a sequence of signals. Here, we employ it in
the sparse domain as follows:

Stji—1 = Fe sSi—1jt—1 (%)

P11 = Ft,sPt—l\t—lFEs +Q (6)

K, =P, 1(2,9)7[®, TP, (2, ¥)" + R (7)
Sie = 81 + Ky — 2408, 1) ®)

Pyt =Py — Ki (P P)Pyp_y, ©

where the subscript ¢ denotes the time index, ¢|t — 1 repre-
sents the prediction for time ¢ from time ¢ — 1, ¢|¢ is the final
update value for time ¢. The meaning for each term in the
equations is as follows: § denotes the estimated sparse signal
vector, F; , is the state transition matrix from time ¢ —1to ¢ in
the sparse domain, P is the error covariance matrix, Q is the
process noise covariance matrix, K is the Kalman gain, ® is
the measurement matrix, ¥ is the sparsifying basis, R is the
measurement noise covariance matrix, y is the measurement
vector and the superscript T is the transposition operator.
The equations have two stages, i.e., the prediction stage
(5)(6) and the measurement update stage (7)-(9). For a CS
captured video sequence, given the estimated previous frame,
we can get the prediction and update of the current frame us-
ing the KF equations, provided that the transition matrix F; g
is known. The KFCS framework proposed in [1] runs an ini-
tial KF with F'; ; = I, where I is an identity matrix, since the
sparsity pattern is assumed to be changing sufficiently slowly.
In order to derive a generalized KFCS framework without en-
forcing an unchanging support, we consider the use of an ac-
tual transition matrix to capture the change of support.
Recall that in the previous step, ME provides us the MVs
that indicate the movements of blocks. With the MV values,
the time domain transition matrix F; can be derived as a per-
mutation matrix, whose entries are all 0 except that in row j
the entry ¢ equals 1 (where 1 is the pixel index in x;_; and j
is its corresponding index after moving according to the MV).
Then the sparse domain transition matrix is F; s = U ~1F; .
If we set 8;_1};_1 as the reconstructed previous frame, then
ét|t is the estimated sparse signal after the KF, i.e., s; kF.

3.3. Compressive Sensing on the Residual

To further improve the performance, we apply CS on the
residual from the KF, which is more sparse than the original
signal. With the result after the KF, i.e., s; xF, the residual is
calculated as:

Yires =Yt — D, Us, kr. (10)
Then we propose two alternative methods to recover the resid-
uval signal using y; ,es. The first way is to utilize BPDN as in

Algorithm 1 Generalized-KFCS

Input:®,(t =0,...,7), ¥,y (t =0,...,T), positive param-
eters v and €, a negative constant w, a pre-learned co-
variance matrix Q , a measurement noise level ops.

Output: Estimated signal vectors §; , X:(t = 0,...,T) or
ét,mod P ﬁt,mod(t = 0, ceey T)

Initialization: Att = 0: §o = ming, 3|[yo — ®o¥sol|3 +
’ylHS()Hl, }A(() = ‘I’§0 P0|0 =0.

Process: Fort=1:T,do

1. Pre-process™: pad on y; with w to get Xy in;.

Do ME between x; ;,; and X;_1. Derive F; and F ;.

Get st i apply KF (5) - (9) with R; = 02, 1.

Compute yy ;.5 using (10).

Run BPDN: mins, ., %||yt’res — ®,Us; .53 +

7||st,res||1~

Or estimate A from s;xp and run Modified

BPDN: minst,,.esyy,,L[,d ||(St,7'es,mod)AC 1 s.t. HYt,T'es -

(Pt‘]?st,res,mod |2 <e

6. Output signal estimate: §; = s; xF + 5S¢ res, Xt = ¥Sy;

Nk

S¢,mod = St,KF + S¢,res,mod, Xt,mod = ‘I’St,mod'
* An initial BPDN is required for a Gaussian sampling matrix.

equation (2) using y; res as the measurements. The second
one is to employ a Modified BPDN [4] as follows:

1, 8.t ||¥ires — Ausi|l2 < e, (11)

mins, ||(St)Ae

where ¢ is an upper bound on the size of the noisy contri-
bution, (s;)a refers to the sub-vector of s; that contains the
elements with index in A and A€ denotes the complement of
the set A. Here, we derive A as the 99%-energy support [3]
of s; kr, rather than the support of s;_;. Either approach
yields a residual signal, denoted by S; ,¢s and S; res,mod, re-
spectively. Then the reconstructed frame is the sum of the KF
result and the reconstructed residual signal.

3.4. Motion Estimation Enhanced KFCS (Generalized-
KFCS)

Based on the previous discussions, the proposed generalized-
KFCS algorithm is shown in Algorithm 1. The input co-
variance matrix Q is estimated by using a training sequence.
Specifically, for a sequence s;(t = 1,...,T), we first zero
out the “compressible” coefficients by setting all coeffi-
cients below a threshold to zero. The method of selecting
the threshold is described in [2]. Then we calculate the
transition matrices F; and F; s(t = 1,...,T) using ME.

The estimation is then computed as: Q = azySI, where

02y = m Soidi(sei — Frasioq4)?, 0 = {t
St — Ft’sst;u # 0}, 4 is the coefficient index. Note that
Osys is set to zero if ) . (|0;]) is zero. This process is a simple
extension of [2].

In contrast to the KFCS algorithm [1, 2] and the modified
CS algorithm [3, 4], we take account of the motion between
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Fig. 2. Comparison of various reconstruction methods for a
fixed sampling rate (M /N = 0.4) (a) using Gaussian projec-
tion matrices; (b) using random sampling matrices.

frames, therefore the requirement for a slowly changing sup-
port set is relaxed. The proposed algorithm can run accurately
as long as ME can be performed properly. Even so, it still
requires some correlation between frames (this is also why
we do not use the conventional CS for each frame), but we
will show that our algorithm outperforms KFCS and modi-
fied BPDN when a relatively fast changing support set exists.

4. SIMULATION RESULTS

The proposed algorithm is evaluated on the foreman video se-
quence [23]. The frames in the sequence are resized to 64 x
64 to ease implementation issues. Normalized Square Error
(NSE) is used for evaluation, which is defined as: NSFE :=
||x¢ —%¢|3/]|x¢||3. We compare the performance of our algo-
rithm with the conventional CS method, the KFCS algorithm
[2] and the modified BPDN algorithm [4]. We label modi-
fied BPDN as modCS, our algorithm with BPDN in step 5 as
Generalized-KFCS and our algorithm with modified BPDN
in step 5 as Generalized-KF-modCS. We consider two differ-
ent CS implementations: 1) i.i.d. Gaussian sensing matrices
for different time frames; 2) i.i.d. random sampling matrices
for different time frames. We employ a 4-level 2D wavelet
transform for sparsifying. The parameters are set as: v = 10
[24], 02,, = 25, = 5, w = —10. The results are obtained
by averaging over 50 trials.

Figure 2 illustrates the performance of various reconstruc-
tion methods for a fixed sampling rate (M/N = 0.4). We
note that the proposed algorithm with either BPDN or modi-
fied BPDN outperforms all the other state-of-art algorithms.
When Gaussian sampling is employed, the combination of
ME enhanced KF and modified BPDN, i.e., Generalized-KF-
modCS, leads to the best performance. Note that using this
sampling method, the complexity is increased because of an
extra BPDN process needed for the pre-process step. When
random sampling is used, the two alternatives of our algo-
rithm have similar performance as shown in Figure 2(b). We
observe that when this simpler sampling strategy is utilized,
the KFCS and Modified BPDN method perform poorly, even
worse than the simple CS. However, our algorithm, which
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Fig. 3. Comparison of various reconstruction methods for dif-
ferent sampling rates (a) using Gaussian projection matrices;
(b) using random sampling matrices.

employs direct ME, still maintains its good performance.
Note that the different NSE values for KFCS on the first
frame occurs in both figures because the algorithm starts its
iterations from the first frame, but for other algorithms we
just initialize using the conventional CS for the first frame.
Also note that to aid clarity, different scales for the y axes are
used in the figures. When the random sampling is employed,
our algorithm has worse performance but less complexity
than with Gaussian sampling.

In Figure 3, we evaluate our algorithm for different sam-
pling rates. The results shown are for frame 10. From Figure
3(a), we can observe that both versions of Generalized-KFCS
are superior to the other algorithms, except that modified
BPDN performs slightly better when the sampling rate ap-
proaches 0.2. However, when random sampling is employed
as in Figure 3(b), both versions of our method always have
better performance than the others. For example, to achieve
the NSE of 0.02, the two alternatives of the generalized-
KFCS need only a sampling rate of less than 0.25, while
conventional CS requires a sampling rate of 0.3 and the oth-
ers require a sampling rate of about 0.35. It is noticeable
that the fewer measurements we take, the more gain can be
obtained by using our proposed method.

5. CONCLUSIONS

In this paper, we propose a generalized KFCS framework
for causal reconstruction of a CS captured video sequence.
We relax the assumption of a slowly changing signal support
in KFCS by including an actual estimated transition matrix
for the KF. A framework for direct ME from CS subsam-
ples is also developed when the random sampling method
is utilized. Experiments demonstrate the advantage of the
proposed method in the reconstruction of an actual video se-
quence.
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