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ABSTRACT

In this paper, we focus on the restoration of an image in mo-

saic active imaging. This emerging imaging technique con-

sists in acquiring a mosaic of images (laser shots) by focusing

a laser beam on a small portion of the target object and subse-

quently moving it to scan the whole field of view. To restore

the whole image from such a mosaic, a prior work proposed a

simplified forward model describing the acquisition process.

It also provides a prior on the acquisition parameters. To-

gether with a prior on the distribution of images, this leads to

a MAP estimate alternating between the estimation of the re-

stored image and the estimation of these parameters. The nov-

elty of the current paper is twofold: (i) We provide a numer-

ical study and argue that faster convergence can be achieved

for estimating the acquisition parameters (ii) we show that

the results from this earlier work are improved when the laser

shots are acquired according to a more compact pattern.

Index Terms— active imaging, laser imaging, image re-

construction, differentiable optimization, graph-cut.

1. INTRODUCTION

In flash laser imaging, the target object is illuminated with

a very short laser flash. A time-gated camera synchronized

with the laser is used to detect and select the photons received

within a brief time-gate (few nano to micro seconds), after a

chosen delay (10−4 to 10−7 seconds) has elapsed. This tem-

poral selection allows to eliminate photons back-scattered by

the foreground (e.g. fog, dust or vegetation) and the back-

ground. Generally, the field of view of the camera is fully il-

luminated by a Nd:YAG laser and acquired at about 10 Hz. In

mosaic active imaging, a 1−10 kHz fiber laser is used instead,

expected to offer higher average powers and plug-efficiencies

within a few years. As the repetition-rate is larger by three

orders of magnitude, the energy per pulse is lowered by the

same ratio. To maintain the same signal-to-noise ratio, only

a reduced part of the field of view is illuminated at each laser

flash. This results in the successive acquisition of typically

100 to 1000 elementary images at 1−10 kHz (laser shots) [1]

subject to multiple degradations [2, 3], that tile as a mosaic to

Fig. 1: Acquisition process in mosaic laser imaging. From

left to right: the ideal image we want to estimate, a reduced

part of the field of view with a single laser flash (laser shot),

the image composed from all laser shots where each pixel is

assigned with its maximum intensity over all of them.

build the full-frame image at 10 Hz (see Figure 1). The object

of interest typically have metric dimensions (e.g. buildings,

vehicles, personnel) and lies between 10 m and 20 km from

the imaging system. The applications can be either terrestrial

or airborne and concern surveillance/target identification.

Restoring the observed scene from the laser shots is a dif-

ficult inverse problem. To our best knowledge, [4] is the first

attempt to give a solution to this problem. They model laser

shots as isotropic Gaussians, assume a Gaussian prior on the

acquisition parameters and a Total Variation (TV) prior on the

distribution of images. This choice is motivated by the ability

of the TV prior to properly restore images [5] and fast mini-

mization algorithms [6, 7, 8]. In [4], a two-stage iterative al-

gorithm is proposed, alternating between (i) the estimation of

the restored image using graph cuts and (ii) the estimation of

the acquisition parameters using a standard gradient descent.

The novelty of this paper is twofold: (i) we provide a nu-

merical study for the estimation of the acquisition parameters

and argue that faster convergence can be achieved and (ii)

show that the results from [4] are improved when the laser

shots are acquired according to a more compact pattern.

The rest of this paper is organized as follows. First, we re-

mind in Section 2 the forward model of the imaging process

and the restoration algorithm of [4]. In Section 3, we discuss

advanced optimization methods for efficiently estimating ac-

quisition parameters. We briefly describe two tilings of the

laser shots in Section 4. Finally, we compare the accuracy

and the convergence between all these elements in Section 5.



2. MATHEMATICAL MODELING

For an integer N > 0, we denote the set of all pixels by

P = {1, . . . , N}2 and the number of laser shots by the in-

teger K > 0. For every index k ∈ {1, . . . ,K}, we denote by

θk = (ck, wk) ∈ J with J = (R2 × R
∗
+), the parameters of

a Gaussian. For every p ∈ P , a laser shot is modeled as an

isotropic Gaussian (called illumination dome) defined by

Gθk(p) = exp
(

−
‖p− ck‖

2

2wk
2

)

, for 1 ≤ k ≤ K,

where ‖.‖ denotes the Euclidean norm. Let us denote by v =
(vk)1≤k≤K with vk ∈ R

P the observed data (laser shots) and

u ∈ R
P the ideal image (i.e. the one that would have been

obtained with an ideal sensor and illumination). The proposed

simplified forward model is

v = M(θk)1≤k≤K
u+ n,

where n = (nk)1≤k≤K , with nk ∈ R
P , is an additive Gaus-

sian white noise of standard deviation σ > 0, and

M(θk)1≤k≤K
: RP −→ R

KP ,

u 7−→
(

(Gθk(p)up)p∈P

)

1≤k≤K
.

(1)

Once the acquisition parameters (θk)1≤k≤K are fixed, this

model is linear in u. Due to some perturbations, these pa-

rameters need however to be estimated. We consider that the

parameters wk and ck are independent random variables and

assume that the former follow a Gaussian law of mean w and

standard deviation σw while the latter follow a Gaussian law

of mean ck and standard deviation σc, ∀k ∈ {1, . . . ,K}. We

also assume a TV prior on u and assume that u is indepen-

dent of the parameters (θk)1≤k≤K . Based on these assump-

tions and given a fixed data v ∈ R
KP , the Maximum A Pos-

teriori (MAP) estimate is calculated by minimizing, among

u ∈ R
P and (θk)1≤k≤K ∈ JK , the function

F (u, (θk)1≤k≤K) =
‖M(θk)1≤k≤K

u− v‖2

2σ2
+ βTV (u)

+

K
∑

k=1

‖ck − ck‖
2

2σ2
c

+

K
∑

k=1

|wk − w|2

2σ2
w

, (2)

where β, σ, σc, σw, w and (ck)1≤k≤K are known param-

eters and TV (u) denotes the TV of u. Notice that for any

(θk)1≤k≤K ∈ JK , the function u 7→ F (u, (θk)1≤k≤K)
is convex. However, when u ∈ R

P is fixed, the function

(θk)1≤k≤K 7→ F (u, (θk)1≤k≤K) is non-convex. The func-

tion F is non-convex and we cannot a priori provide guaran-

tees that we compute a true minimizer of F . We have however

not observed any convergence problem in practice. This is

likely because the algorithm is well initialized. A two-stage

iterative process is designed in [4]. Its sketch is described in

Algorithm 1: it alternates between (i) the estimation of the re-

stored image (line 3) and (ii) the estimation of the acquisition

parameters (line 4), until some accuracy εa is reached. The

step (i) is solved exactly (modulo a provided quantization

step) using graph cuts while the step (ii) is solved approxi-

mately by using a standard gradient descent with an Armijo

step size rule until some accuracy εe is reached. The parame-

ter εe decays with the iteration number n in the Algorithm 1.

In this way, the estimation of the acquisition parameters is

progressively more accurate as n increases. For v ∈ R
KP ,

u ∈ R
P and (ck, wk)1≤k≤K ∈ JK , we obtain

∂F

∂ck,i
=

ck,i − ck,i
σ2
c

+
1

σ2wk
2

∑

p∈P

(pi − ck,i)D
k
p ,

∂F

∂ck,j
=

ck,j − ck,j
σ2
c

+
1

σ2wk
2

∑

p∈P

(pj − ck,j)D
k
p ,

∂F

∂wk

=
wk − wk

σ2
w

+
1

σ2wk
3

∑

p∈P

‖p− ck‖
2Dk

p ,

(3)

with Dk
p = Ek

pup

[

Ek
pup − vkp

]

and Ek
p = e

−
‖p−ck‖2

2wk
2 . Notice

that the above partial derivatives w.r.t. θk do not contain vari-

ables of θk′ for k′ 6= k. This implies that the Hessian matrix

of F is block diagonal with blocks of 3× 3.

Algorithm 1 Algorithm for approximating a minimizer of F

INPUTS: v ∈ R
KP , β, σ, σc, σw, w and (ck)1≤k≤K

OUTPUTS: Image estimate u∗

1. Initialize (θ0k)1≤k≤K = (ck, w)1≤k≤K

2. while ‖un − un−1‖2 ≤ εaN
2 do

3. un ∈ argminu∈RP F (u, (θnk )1≤k≤K)
4. (θn+1

k )1≤k≤K ∈ argmin
(θk)1≤k≤K∈JK

F (un, (θk)1≤k≤K)

5. endwhile

3. ADVANCED OPTIMIZATION METHODS FOR

ESTIMATING ACQUISITION PARAMETERS

In this section, we discuss possible choices of methods for

efficiently estimating the acquisition parameters in the Algo-

rithm 1 (see Section 2). First, we remind that these parameters

are estimated using a Standard Gradient Descent (SGD) with

an Armijo step size rule in [4]. Let us denote by T the de-

sired number of iterations in this rule. Since the computation

of F and its gradient (see (2) and (3) in Section 2) requires

O(KN2) operations, the worst-case complexity of the SGD

per iteration is O(TKN2) and requires a memory storage of

O(K). Under particular assumptions, it also has a global con-

vergence rate of O(1/t) (t is the number of iterations) and

converges linearly when close enough to the local minimizer.

Among first-order methods, the Nesterov’s Accelerated Gra-

dient Descent (AGD) algorithm [9] can however achieve a



Fig. 2: From left to right: square and hexagonal tilings of

laser shots, generated by setting w = 5 and approximately

null values for σ, σc and σw. Each pixel in these images is

assigned with its maximum intensity over all k ∈ {1, . . . ,K}.

better global convergence with a rate of O(1/t2), while keep-

ing the same time complexity and memory storage as SGD.

Since F is twice continuously differentiable and has

a block diagonal Hessian of reasonable size, second-order

methods are also computationally accessible. Under partic-

ular assumptions, the Newton’s method converges quadrati-

cally when close enough to the local minimizer. However, this

method is known to be (i) computationally demanding and (ii)

can converge to a local maximum or a saddle point when the

functional is not convex (and this is our case). Quasi-Newton

methods like Broyden-Fletcher-Goldfarb-Shanno (BFGS)

overcomes the above issues of the Newton’s method by (i)

computing an approximation of the Hessian matrix (or its in-

verse) and (ii) ensuring that the functional deacreases during

the iterates when using Wolfe’s step size conditions. More-

over, BFGS converges superlinearly when close enough to

the local minimizer. However, it would not be numerically

acceptable to enforce Wolfe’s condition in our case since it

involves computations of ∇F . Although we do not have

theoretical convergence guarantee, we have therefore to use

an Armijo condition. In this case, if K ≪ N2, the time

complexity of BFGS remains the same as SGD while having

a memory storage of O(K2).
Finally, we have empirically observed that the Hessian is

dominated by its diagonal. In such a particular situation, it is

reasonable to apply a modified Newton method in which we

approximate the Hessian by canceling its diagonal elements.

This strategy is named "Diagonal-Scaling" in [10] and we will

denote it as Diagonally-Scaled Newton (DSN) in the rest of

this paper. Moreover, to ensure that F decreases during the

iterates, we replace in the diagonalized Hessian, the negative

values by a small constant. Using an Armijo step size rule,

the time complexity and the memory storage are the same as

SGD. Although we do not have convergence guarantees with

DSN, we expect it to be faster than SGD and AGD.

4. TILINGS OF LASER SHOTS

In this section, we briefly present two possible choices for the

location of the laser shots: the square tiling and the hexago-

nal tiling. In the first one (used in [4]), K = K ′ × K ′ laser

shots are tiled on a uniform square grid. In the second one,

K = K ′2−⌊K′

2 ⌋ laser shots are tiled on a uniform hexagonal

grid. For any K ′ > 1, notice that the number of laser shots

of a hexagonal tiling is smaller than for a square tiling. The

difference between these tilings is illustrated in Figure 2. No-

tice that we expect less accurate estimates of the borders of

the restored image, when acquired with a hexagonal tiling.

5. EXPERIMENTAL RESULTS

5.1. Applicative framework and implementation details

The experiments detailed in the next section are conducted on

simulated data with images of size 256× 256 (i.e. N = 256).

Realistic values are however used (expressed in pixels) for the

parameters σ, σc, σw, w, K ′ and ck, ∀k ∈ {1, . . . ,K}. In this

setting, we set σ = 0.1, σc = 0.81, σw = 0.07, w = 16.2 and

K ′ = 9. Possible choices for the parameters ck are discussed

in Section 4. Notice that the pixel intensity in the ideal image

ranges in [0, 1] and is coded on 8 bits.

For estimating the restored image, we use the max-flow

implementation of [11] and the dyadic parametric scheme

of [12]. For estimating the acquisition parameters, the accu-

racy εe decays between 0.1 and 0.01. For the accuracy of the

Algorithm 1, we found that setting εa = 9.61 × 10−7 is a

good tradeoff between convergence and accuracy. Its exact

value corresponds to a per-pixel error of 9.8× 10−4 between

two successive image estimates. The penalty parameter β
(see (2) in Section (2)) is set to minimize the Mean Square

Error (MSE) 1 between the image estimate and the ideal one

using Golden Section Search [13]. Also, we do not pro-

vide detailed computing times since we believe they are not

representative of an optimized version of the Algorithm 1.

A simple improvement with this regards would consist in

extracting from each image vk a small window containing

the laser shots. With the current C++ implementation, the

restoration of an image typically requires between 1 and 6
minutes on a dodeca core Intel Xeon 3.47 GHz. Also, the

estimation of the restored image typically represents 10% of

the overall computation time.

5.2. Accuracy and convergence

We evaluate both the benefit of the advanced methods for es-

timating the acquisition parameters (see Section 3) as well

as the use of a hexagonal tiling against a square tiling (see

Section 4). We remind that in preprint [4], these parameters

are estimated with SGD and that a square tiling is used. The

evaluation is conducted on the same images as [4] and using

the parameters provided in Section 5.1. Let us now describe

the experimental setup for the square (resp. hexagonal) tiling.

For each image, we generate 3 sequences of K = 81 (resp.

1MSE and PSNR measures are described at http://megawave.

cmla.ens-cachan.fr/stuff/guid3/node256.html#fmse.



Image PSNRH PSNRS

baboon 23.92± 4× 10−2 23.77± 2.5× 10−2

barbara 25.19± 3.1× 10−2 25.01± 5.3× 10−2

peppers 28.22± 7× 10−2 28.02± 6.1× 10−2

cameraman 28.25± 3.6× 10−2 27.98± 6.2× 10−2

lena 27.92± 4× 10−2 27.65± 3.9× 10−2

man 26.05± 3.6× 10−2 25.89± 3.3× 10−2

boat 26.77± 2.5× 10−2 26.51± 2.1× 10−2

factory 27.03± 2.1× 10−2 26.82± 2.3× 10−2

Table 1: Accuracy of the Algorithm 1 when using a hexag-

onal tiling (PSNRH ) against a square tiling (PSNRS) with

SGD for estimating the acquisition parameters. The measures

are expressed in dB and rounded to the nearest value.

K = 77) laser shots and illumination domes. The sequences

are then restored by applying Algorithm 1 and using SGD,

AGD, BFGS and DSN for estimating the acquisition parame-

ters. For each sequence, we measure the Peak Signal-to-Ratio

Noise (PSNR) between the image estimate and the ideal im-

age, denoted as PSNRS (resp. PSNRH ). To be as fair as

possible between tilings, these measures are restricted to the

center of the image (i.e. the pixels for which their Tcheby-

chev distance to the borders is greater or equal than N
2K′ ). For

each restored sequence, we also compute the total number of

iterations used to estimate the acquisition parameters by sum-

ming the number of iterations required by all the estimation

required by Algorithm 1. The results of these experiments are

summarized in Table 1 and Table 2 and illustrated in Figure 3.

In Table 1, we provide statistics PSNRS and PSNRH for

each image. For each tiling, since the measures are nearly the

same for all optimization methods, we only provide those ob-

tained using SGD. For all images, PSNRH is slightly larger

than PSNRS . In words, the hexagonal tiling leads to better

image estimates while using a smaller number of laser shots.

Results for a subset of images of Table 1 are shown in Fig-

ure 3. The selected images correspond to the sequence for

which the MSE between the image estimate and the ideal

image is the smallest. We provide for each image the ideal

one, the image estimate as well as the image where each pixel

is assigned with its maximum intensity over all laser shots.

Despite a substantial noise level, we observe that the Algo-

rithm 1 behaves globally well. Large flat areas are well de-

noised while thin structures are well preserved, even between

domes where the knowledge about data is less accurate.

In Table 2, we provide the mean of the total number of

iterations required for estimating the acquisition parameters.

Since these measures are nearly the same for both tilings, we

only provide those obtained with the hexagonal tiling. We

also provide the average condition number of the Hessian ma-

trix at the minimizer obtained with SGD. For all images,

second-order methods exhibit faster convergence than first-

order ones, even for moderately ill-conditioned problems.

SGD AGD BFGS DSN H̄∗

baboon 27 22.7 16.7 20.3 24.8
barbara 30.3 28.7 18.3 20.7 40.7
peppers 29.7 32.7 19.7 21 56.1

cameraman 31.3 30 19.7 18 197.1
lena 27 25.7 17 17.7 39.5
man 27.7 28 17.3 15.3 77.3
boat 23 23 16.7 20 56.5

factory 25.7 28.7 18.3 16.7 67.4

Table 2: Convergence of Algorithm 1 using advanced meth-

ods for estimating acquisition parameters and for a hexagonal

tiling. For each image and method, we provide the mean of

the total number of iterations required for estimating these

parameters. For each image, we provide the mean condition

number H̄∗ of Hessian at the minimizer obtained with SGD.

Fig. 3: Reconstruction of the images “barbara” (upper-half)

and “cameraman” (lower-half) with Algorithm 1, using a

hexagonal tiling. In the left column, each pixel of the image

is assigned with its maximum intensity over all laser shots.

The middle and right columns are resp. the image estimate

and the ideal one. Detailed views of all these images are also

provided in the second and fourth rows.
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