
FAST ITERATIVELY REWEIGHTED LEAST SQUARES FOR LP REGULARIZED IMAGE
DECONVOLUTION AND RECONSTRUCTION

Xu Zhou1, Rafael Molina2, Fugen Zhou1, and Aggelos K. Katsaggelos3

1Beihang University, Beijing, China
2 Universidad de Granada, Granada, Spain
3 Northwestern University, Evanston, USA

xuzhou@sa.buaa.edu.cn, rms@decsai.ugr.es, zhfugen@buaa.edu.cn, aggk@eecs.northwestern.edu

ABSTRACT

Iteratively reweighted least squares (IRLS) is one of the most

effective methods to minimize the lp regularized linear in-

verse problem. Unfortunately, the regularizer is nonsmooth

and nonconvex when 0 < p < 1. In spite of its properties and

mainly due to its high computation cost, IRLS is not wide-

ly used in image deconvolution and reconstruction. In this

paper, we first derive the IRLS method from the perspective

of majorization minimization and then propose an Alternat-

ing Direction Method of Multipliers (ADMM) to solve the

reweighted linear equations. Interestingly, the resulting algo-

rithm has a shrinkage operator that pushes each component to

zero in a multiplicative fashion. Experimental results on both

image deconvolution and reconstruction demonstrate that the

proposed method outperforms state-of-the-art algorithms in

terms of speed and recovery quality.

Index Terms— Image restoration, image reconstruction,

compressive sensing, nonconvex nonsmooth regularization,

iteratively reweighted least squares

1. INTRODUCTION

In this work, we focus on the l2 − lp minimization problem,

min
x

f(x) =
1

2
‖Ax− y‖22 + λ‖Rx‖p (1)

where x ∈ �n, y ∈ �m, λ is a nonnegative real number,

‖ · ‖p means lp quasi-norm with 0 < p < 1, A is a m ×
n (n ≥ m) matrix and R is a r × n matrix. In particular,

we assume that Ker(A)
⋂
Ker(R) = 0 so that the optimal

solution of Eq. (1) exists (see [1]), and both ATA and RTR
can be diagonalized by the same fast transform F (e.g., DFT).
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The l2 − lp model has been widely applied in sparse sig-

nal recovery, such as image deconvolution [2, 3, 4, 5, 6, 7] and

reconstruction [8, 9, 10]. Many published results [3, 4, 5, 6,

7, 11] suggest that lp(p < 1) regularization has better perfor-

mance than l1. This is because lp not only enforces stronger

sparsity than l1 but it also better preserves edges. As a result,

it renders a smooth image while significant image details are

better recovered.

However, minimizing l2 − lp is not a trivial task main-

ly because of its nonconvexity. One simple and effective

method for minimizing l2 − lp is the iteratively reweighted

least squares method [3, 11, 12] ([11, 12] solve a constrained

lp minimization problem, in which the observation is noise

free) and its variant version [13]. IRLS [3] and [13] with

α = 2 recursively solves the following reweighted linear

equations,

(ATA+ λRTW tR)xt+1 = AT y (2)

where W t is a diagonal matrix with each component defined

by |Rxt|, e.g., W t = diag(min(|Rxt|, 0.01)p−2) [3]. One

major drawback of IRLS is that solving Eq. (2) is computa-

tionally expensive because no fast transform can diagonalize

ATA + λRTW tR. Nevertheless, as we will show soon, Eq.

(2) can be efficiently solved by making use of ADMM, under

the assumption that both ATA and RTR can be diagonalized

by the same fast transform.

Related Work. For the l2− l1 problem, the most efficient

optimization method is ADMM, also known as split Breg-

man [14] or augmented Lagrangian. ADMM achieves state-

of-the-art speed by splitting the original problem into simpler

subproblems, which can be easily solved by computationally

inexpensive operators (e.g., DFT and shrinkage operator). It-
erative Shrinkage-Thresholding (IST) based algorithms, such

as [15] and [16], are also very useful for this problem. For

the l2 − lp problem, most recent approaches use smooth ap-

proximation [1, 5, 6, 17] and then search the stationary point

of approximation function by trust region methods, quasi-

Newton iteration or gradient projection. Krishnan and Fer-

gus [4] propose a fast algorithm with variable splitting [8], in



which the nonconvex subproblem is solved by a lookup-table

(LUT) method. Instead of formulating a nonconvex objective

function, Chartrand suggests using a generalized shrinkage

operator for image reconstruction [18, 19].

In this work, we first prove the convergence of the IRLS

method in [3] from the perspective of majorization minimiza-

tion (MM) [20]. By formulating the solution of reweighted

linear equations as the minimizer of a particular quadratic

function, we propose an ADMM to accelerate IRLS. Each

ADMM iteration includes a shrinkage operator that moves

every component of the input vector toward zero in a mul-

tiplicative way. Experiments show that the proposed method

decreases the objective of Eq. (1) efficiently and converges to

the limit points at linear rate.

2. FAST IRLS

Since f(x) is not differentiable, we use the following smooth

function Jε(x) to approximate it,

Jε(x) =
1

2
‖Ax− y‖22 + λ

∑
i

ϕ(Rix) (3)

where Ri means the ith row vector of R and for v ∈ �, ϕ(v)
is given by

ϕ(v) =

⎧⎨
⎩

p

2
εp−2v2 +

2− p

2
εp, if |v| < ε

|v|p, if |v| ≥ ε (4)

In essence, ϕ can be viewed as the Huber function [1] since

they are identical after a linear transform. We prefer this kind

of function because λ in Jε is not scaled by p and f is upper

bounded by Jε. The major merit of the Huber approximation

is the perfect approximation for ∀|v| ≥ ε, but the shortcoming

is that it is not second order differentiable at ε. Other smooth

approximations can be found in [5, 6, 17].

It is conceivable that a local minimizer of Jε is also a lo-

cal minimizer of f when ε → 0 (based on the lower bound

of nonzero entries of |Rx| and continuity of f ). Instead of

searching for a global minimizer of Eq. (3), we look for a

stationary point of Eq. (3). By setting ∇Jε(x) = 0, we have

∇Jε(x) = ATAx−AT y + λRTDεRx = 0 (5)

where the Dε = diag(min(pεp−2, p|Rx|p−2)). In what fol-

lows, we first derive IRLS [3] from the perspective of MM

and subsequently show that IRLS [3] converges to a station-

ary point of Jε. Finally, we present the fast IRLS algorithm.

Making use of the conjugate concave function principles

[21], see also [13] for a definition for the penalty function

ϕ(v) = (|v|α + ε)
p
α−1(α ≥ 1), we introduce an auxiliary

function

Gε(x,w) =
1

2
‖Ax−y‖22+

λ

2

∑
i

wi(Rix)
2 − p1−q

q
wq

i (6)

where 0 < wi ≤ pεp−2 and 2
p + 1

q = 1. Notice that, for any

v ≥ 0,

ϕ(v) = min
0<w≤pεp−2

1

2
wv2 − p1−q

2q
wq (7)

Furthermore, for a given v, the solution of

wv = arg min
0<w≤pεp−2

1

2
wv2 − p1−q

2q
wq (8)

is given by

wv = min(pεp−2, p|v|p−2) (9)

For a given x ∈ �n, let wx ∈ �r and define its ith component

wx(i) as

wx(i) = min(pεp−2, p|Rix|p−2) (10)

Consequently, we have

Jε(x) = Gε(x,wx) (11)

Jε(x
′) ≤ Gε(x

′, wx) ∀x′ 
= x (12)

Hence, using the MM framework [20], given an iteration

point xt, if we can find a xt+1 satisfying

Gε(x
t+1, wxt) ≤ Gε(x

t, wxt). (13)

It then follows that

Jε(x
t+1) = Gε(x

t+1, wxt+1) ≤ Gε(x
t+1, wxt)

≤ Gε(x
t, wxt) = Jε(x

t) (14)

Consequently, the sequence Jε(x
t), for t = 1, 2, ..., is nonin-

creasing as long as Eq. (13) holds. In addition, since Gε is

continuous in both x and w, any accumulation point x∗ of the

MM sequence xt is a stationary point of Jε(x) (see [2]), and

Jε(x
t) decreases monotonically to Jε(x

∗).
Let’s now proceed to find xt+1 satisfying Eq. (13). For

a given wxt , a typical choice for xt+1 is the minimizer of

Gε(x,wxt). Thus, xt+1 has the form of

xt+1 = argmin
x

1

2
xTATAx− (AT y)Tx+

1

2
xTRTW tRx

(15)

where W t = λdiag(wxt). Obviously, the above quadratic

function is strictly convex and its minimizer is given by

xt+1 = (ATA+RTW tR)−1AT y (16)

Eq. (16) has an IRLS form like [3] but with a p-scaled weight.

This IRLS contains two steps only, updating the weights and

solving Eq. (16). Better (closer to the desirable) weights

probably yield better results. To show this, suppose W t is

formed by x∗, a stationary point of Jε; it then follows that

xt+1 = x∗, indicating that x∗ is also the fixed point of Eq.

(16). However, note that since the coefficient matrix of Eq.

(16) can not be diagonalized by DFT, solving Eq. (16) may

require tens or even hundreds of CG iterations (see [2, 3, 7]),

which is very computationally expensive.



Algorithm 1 Fast IRLS Algorithm

Require: y, A, R, λ, p, T , K, εmin, εmax.

1: precompute ΛA, ΛR, β = pλεp−2
min, Y = FAT y

2: x = y (or x = Y ), d = 0, βa = pλεp−2
max

3: for t = 1 to T do
4: W = diag(min(β, pλ|Rxt|p−2))
5: for k = 1 to K do
6: update v using Eq.(19)

7: update d using Eq.(20)

8: update x using Eq.(18)

9: end for
10: end for
11: return x

By making use of ADMM, we can find the solution to

Eq. (15) by a faster method than solving the linear system

Eq. (16). To this end, we first introduce an auxiliary variable

v = Rx. Accordingly, the unconstrained problem Eq. (15)

becomes a constrained problem of the form

xt+1 = argmin
x

1

2
xTATAx− (AT y)Tx+

1

2
vTW tv

subject to v = Rx (17)

Since Eq. (17) is convex, it can be efficiently solved by AD-

MM (see page 15 in [22]). The resulting IRLS algorithm is

shown in Alg.1, in which ΛA and ΛR are the eigenvalues of

ATA and RTR respectively, and the updates for x, v and the

dual variable d are given by

x = F−1(ΛA + βaΛR)
−1(Y + βaFRT (v − d)) (18)

v = βa(W
t + βaI)

−1(Rx+ d) (19)

d = d+Rx− v (20)

where βa in Eq. (18) is the penalty parameter which enforces

the constraint Rx = v and controls the convergence rate of

ADMM. Notice that, the v update Eq. (19) can be considered

as a shrinkage operator since it moves all components of the

input vector toward zero in a multiplicative style.

Since we are looking for a fixed point of Eq.(16), we adopt

the warm start strategy like in [7] to further accelerate IRLS.

In particular, it is conceivable that Alg.1 with K = 1 is faster

than Alg.1 with K ≥ 2 when the same number of x updates

is performed, based on the intuition that better weights yield

better result. In fact, when K ≥ 2, the weights are fixed in

the k − loop, while Alg.1 with K = 1 updates the weights

immediately after updating x. In addition, if p = 1, Alg.1

with K = 1 is similar to the well known ADMM-l1 (e.g.,

[14]) with a noticeable difference of the shrinkage operator

(see Eq. (19)). We observe that our Alg.1 with K = 1 is faster

than ADMM-l1 for 20 iterations which is a typical iteration

number in image deconvolution.

Compared with the IRLS method in [3], the proposed fast

IRLS Alg.1 has two major advantages. First, it makes use of a

(a) Cameraman 256× 256 (b) Degraded Image
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Fig. 1. Deconvolution results and evolutions of f(x)

fast transform F and ADMM so that it reaches state-of-the-art

speed, whereas IRLS [3] cannot utilize F . Second, it allows

εmin to be zero without causing numerical problems, whereas

IRLS [3] cannot do this. It should be noted that, in order

to have Jε(x
t+1) ≤ Jε(x

t), we only need an approximate

solution of Eq.(15), so that Eq.(13) holds. Luckily, ADMM

provides such a good solution at a very low computation cost.

3. EXPERIMENTS

In this section, we examine the performance of the proposed

algorithm on image deconvolution and reconstruction prob-

lems. All experiments are carried out using MATLAB 7.11

on a 1.8 GHz laptop with 4 GB of memory. For simplicity,

we use only two first-order derivative filters (dx = [1−1] and

dy = [1−1]T ) to enforce sparsity, while second-order deriva-

tive filters [3, 7] and tight frames (like wavelet, RTR = I) can

be used to improve the results. Let Rx = [dx⊗x; dy⊗x] (⊗



Table 1. Image deconvolution with l0.8 regularization

Method Iterations Time f(x) ISNR

[4] with LUT 16 0.62s 0.2318 8.78dB

Alg.1 K=1 16 0.43s 0.2266 8.59dB

Alg.1 K=3 15 0.23s 0.2291 8.83dB

Table 2. Image deconvolution with l1 regularization

Method Iteration=10 Iteration=20 Total

f(x) ISNR f(x) ISNR Time

[14] 0.2181 8.61dB 0.2156 8.63dB 1.44s

Alg.1 0.2173 8.69dB 0.2155 8.68dB 1.46s

means 2-D convolution) and assume periodic boundary con-

ditions, RTR can be diagonalized by the 2-D DFT. All input

images are scaled to the range [0, 1]. The MATLAB code

is available at website https://www.researchgate.
net/publication/262534911_FIRLS_ICIP2014.

3.1. Image deconvolution

The cameraman image is adopted for image deconvolution.

Fig. 1(b) shows the observation image blurred by a 9 × 9
uniform kernel and added Gaussian noise such that BSNR =
40dB. For l0.8 deblurring, we choose λ = 0.00002 for Alg.1

and the algorithm [4]. εmin = 2/255 is adopted for Alg.1 to

avoid enforcing too strong sparsity. εmax = 20/255 is used

for Alg.1. Table.1 shows the ISNRs of three algorithms as

well as the time and objective value. It is clear that Alg.1 with

K = 3 has the best performance in terms of time and ISNR,

yet Alg.1 with K = 1 has the smallest objective value but

yields the poorest image. Two deblurred results of the three

are shown in Fig.1(c-d). As we can see in Fig.1(e), Alg.1

with K = 1 has the best performance in minimizing f(x). To

further show this, we compare it with [14] in l1 minimization.

We set λ = 0.00003 and βa = λ(20/255)−1 for the two, and

εmin = 0 is used for the strongest sparsity promotion. The

evolutions of f(x) are shown in Fig.1(f) and more details can

be found in Table.2. We should mention that the objective

function of [14] is lower than ours after 50 iterations.

3.2. Image reconstruction

We choose 256×256 Shepp-Logan phantom for image recon-

struction. The mask with 7 radial lines and the corresponding

back projection are shown in Fig.2(b) and Fig.2(c), respec-

tively. It is reported in [9] that p = 0.5 has the best perfor-

mance for no less than 10 radial lines. We use the same value

for Alg.1 with K = 1 and set λ = 10−14, since the noise

level is zero. Again, εmin = 0 is used for the best approxi-

mation. εmax should be carefully chosen because the penalty

parameter βa depends on it. We find that εmax = 4/255
works very well. As we show in Fig.2(d), the ISNR reaches

(a) Shepp-Logan (b) 7 radial lines (c) Back Projection
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Fig. 2. Image reconstruction with l0.5 regularization. Recon-

struction is perfect, so not presented

226.3dB after 7000 iterations and 150s. The worst pixel error

is 8.57×10−11, whereas [18] takes more than 8000 iterations

to obtain perfect reconstruction of error 6.58× 10−10 from 9

radial lines. A perfect reconstruction from 6 radial lines can

be found in [19], but we note that the regularization term used

in [19] is not lp. The evolution of ln f(x) is shown in Fig.2(e).

It is interesting that f(x) does not drop monotonically but still

reaches the limit after 5500 iterations.

4. CONCLUSIONS

In this paper, a fast IRLS algorithm for Lp regularized image

deconvolution and reconstruction is presented. We show that

a weighted linear equation whose coefficient matrix cannot

be diagonalized by any fast transform, can be solved by AD-

MM efficiently. From the perspective of MM, we prove that

IRLS [3] converges to a stationary point of Jε. Experiments

show that the proposed algorithm reaches the state-of-the-art

speed and yields competitive results. We believe the proposed

idea, using ADMM to solve a weighted linear system, can be

applied in trust region method [1, 17] as well as other nons-

mooth nonconvex minimization problems, such as [23].
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