
BLIND FULL REFERENCE QUALITY ASSESSMENT OF

POISSON IMAGE DENOISING

Thesis

Submitted to

The School of Engineering of the

UNIVERSITY OF DAYTON

In Partial Fulfillment of the Requirements for

The Degree of

Master of Science in Electrical Engineering

By

Chen Zhang

Dayton, Ohio

May, 2014



BLIND FULL REFERENCE QUALITY ASSESSMENT OF

POISSON IMAGE DENOISING

Name: Zhang, Chen

APPROVED BY:

Keigo Hirakawa, Ph.D. Russell Hardie, Ph.D.
Advisory Committee Chairman Committee Member
Assistant Professor, Electrical Professor, Electrical
and Computer Engineering and Computer Engineering

Raul Ordonez, Ph.D.
Committee Member
Professor, Electrical
and Computer Engineering

John G. Weber, Ph.D. Tony E. Saliba, Ph.D.
Associate Dean Dean, School of Engineering
School of Engineering &Wilke Distinguished Professor

ii



c©Copyright by

Chen Zhang

All rights reserved

2014



ABSTRACT

BLIND FULL REFERENCE QUALITY ASSESSMENT OF POISSON IMAGE

DENOISING

Name: Zhang, Chen
University of Dayton

Advisor: Dr. Keigo Hirakawa

The distribution of real camera sensor data is well approximated by Poisson, and

the estimation of the light intensity signal from the Poisson count data plays a

prominent role in digital imaging. It is highly desirable for imaging devices to carry

the ability to assess the performance of Poisson image restoration. Drawing on a

new category of image quality assessment called corrupted reference image quality

assessment (CR-QA), we develop a computational technique for predicting the

quality score of the popular structural similarity index (SSIM) without having the

direct access to the ideal reference image. We verified via simulation that the

CR-SSIM scores indeed agrees with the full reference scores; and the visually

optimal denoising experiments performed on real camera sensor data give credibility

to the impact CR-QA has on real imaging systems.
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CHAPTER I

INTRODUCTION

The ubiquity of integrating detectors in scientific and engineering applications sug-

gests that a variety of real-world measurements are high-dimensional count data.

Count data, however, is usually an indirect means of measuring the underlying vector-

valued signal of interest (e.g. light intensity in a pixel sensor) that cannot be measured

directly. As such, the estimation of this signal from the observed count data therefore

plays a prominent role across diverse applications. Recent trends in imaging devices

have spurred miniaturization of the physical dimensions of sensing devices in effort to

increase resolution, practicalize portability, reduce power consumption, and cut fab-

rication costs. Miniaturization often leads to increased noise in integrating detector

by reducing photon count, however. Previous work has already shown that the distri-

bution of noise in image sensor is well approximated by Poisson [1, 2], and a number

of Poisson image denoising techniques have already been developed [3, 4, 5, 6].

One unsolved problem is the objective quality assessment of the intensity image re-

constructed from Poisson counts. Specifically, an objective visual quality assessment

(QA) metric aims to predict the perceived quality in an unsupervised manner. QA can

determine the visually optimal balance in denoising between undersmoothing noise

and oversmoothing image features. QA also provides a way to compare multiple

denoising algorithms and determine the best performing method for a given image.
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The image quality assessment techniques that are available today fall into one of

the four following categories—full reference assessment (FR-QA), reduced reference

assessment (RR-QA), corrupted reference assessment (CR-QA), and no reference as-

sessment (NR-QA). Despite their usefulness in other imaging applications, FR-/RR-

/NR-QA modalities are not suited for image restoration tasks such as Poisson image

denoising, where the notion of ideal reference (i.e. intensity image) exists in theory

but we lack direct access to it (see Section II.1). In this thesis, we draw on CR-QA

[7] to predict the quality score of the popular structural similarity index (SSIM) [8, 9]

without having the direct access to the ideal reference image (SSIM is FR-QA) by

exploiting properties of the noisy observation (i.e. corrupted reference). Experiments

with synthetic noisy images and real camera sensor data prove that visually optimal

Poisson image denoising is indeed superior to mean square error (MSE) optimal de-

noising. CR-QA optimal denoising also outperforms denoising optimized by FR-QA

with the help of training images.
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CHAPTER II

BACKGROUND AND RELATED WORK

II.1 IMAGE QUALITY ASSESSMENT

Let f (where fi ∈ `2(Z2), `2(Z2) denotes two dimension sample space) be the latent

intensity image, or a sequence f = (. . . , fi, . . . ) of intensity values fi at the pixel

locations i ∈ Z2. Denote by g ∈ `2(Z2) the Poisson count sequence g = (. . . , gi, . . . )

with gi|fi ∼ P(fi), and φ(g) the estimate of f based on g. Since FR-QA aims to

quantify the perceived similarities between the ideal reference and the target images,

it is an idealistic metric for assessing the extent to which φ recovers f from g [8]. Let

QAFR{f, φ(g)} be the FR-QA score of φ relative to f . Then, the appeal of (most)

FR-QA is that the maximum is attained when the denoised image matches the latent

intensity image:

QAFR{f, f} ≥ QAFR{f, φ} ∀φ ∈ `2(Z2). (II.1)

Thus visually optimal image denoising aims to achieve the following:

φ(g)OPT = arg max
φ

QAFR{f, φ}. (II.2)

We lack direct access to f in real imaging systems, however, and thus FR-QA optimal

image denoising is impractical. An alternative is to use training images representative
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of natural images as a proxy for ideal reference image f . The shortcomings of this

approach are discussed in detail in Section 2.3. RR-QA is designed to predict the

perceptual quality of corrupted image by comparing partial statistical information

of the reference image which is passed via an ancillary channel [10]. This is useful

in scenarios such as live video streaming, where the encoder and decoder has the

means to transmit this sideband information. However this is impractical for image

acquisition, as there are no encoders involved. NR-QA offers an alternative to FR-QA

by doing away with f altogether [11]. Though NR-QA admits a way to assess the

quality of φ, NR-QA score does not correspond to the “degree of faithfulness that

φ reproduces f .” As such, not even a perfect reconstruction (φ = f) maximizes the

NR-QA score:

∃φ ∈ `2(Z2) 3 QANR{φ} ≥ QANR{f}, (II.3)

where QANR{φ} is the NR-QA score of the image φ.

By contrast, CR-QA is designed to meet the three desired attributes of QA for image

restoration problems (not met by FR-/RR-/NR-QA) [7]:

(A) the metric describes perceptual similarity of the processed image to the ideal

reference.

(B) the metric attains a maximum with the ideal reference.

(C) the metric computable without the ideal reference.

One can thus interpret CR-QA as a blind FR-QA [7]—with the help of the corrupted

reference image g, CR-QA predicts the FR-QA score of φ without a direct access to
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f :

QACR{φ(·)|g} = QAFR{f, φ(g)}. (II.4)

CR-QA in [7] was developed for handling additive white Gaussian noise (AWGN).

Though this was an adequate proof-of-concept, more work is needed before CR-QA

can be used in real imaging system. In this thesis, we extend the seminal work of

[7] to Poisson corruption scenario, which characterizes the overall noise distribution

better than AWGN [1, 2]. The denoising experiments performed on raw camera data

in Chapter IV give credibility to the impact CR-QA has on real imaging systems.

II.2 STRUCTURE SIMILARITY(SSIM) INDEX

Structure similarity (SSIM) index is a subjective image quality assessment metric

shown to be more consistent with human visual system than some traditional error

metrics such as mean squared error (MSE) and mean absolute error (MAE) [8]. Figure

II.1 shows a simple example of denoisng images between undersmoothing and over-

smoothing noisy images, where SSIM indicates a relatively good quality restoration

in (c) with higher grade. By contrast, the MSE and MAE hardly register differences

accurately among (a)-(e).

SSIM is designed to characterize the similarity of images f and g based on their
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(a) Noisy (b) Recover1 (c) Recover2 (d) Recover3 (e) Recover4 (f) Clean

SSIM=0.354 SSIM=0.407 SSIM=0.546 SSIM=0.539 SSIM=0.509 SSIM=1

MSE=1.265 MSE=0.801 MSE=0.242 MSE=0.242 MSE=0.266 MSE=0

MAE=0.805 MAE=0.658 MAE=0.360 MAE=0.338 MAE=0.349 MAE=0

Figure II.1: Example of undersmoothing to oversmoothing image restorations and
corresponding QA results. (a) Corrupted image. (b-e) Denoised with different pa-
rameters. (f) Noise free image.

luminance, contrast, and structure, as follows:

SSIM(f, g) =
[ 2E[Fi] · E[Gi] + C1

(E[Fi])2 + (E[Gi])2 + C1︸ ︷︷ ︸
Luminance

]α

×
[ 2
√

E
[(
Fi − E(Fi)

)2]E[(Gi − E(Gi)
)2]

+ C2

E[(Fi − E[Fi])2] + E[(Gi − E[Gi])2] + C2︸ ︷︷ ︸
Contrast

]β

×
[ E[Fi ·Gi]− E[Fi] · E[Gi] + C3√

E
[(
Fi − E(Fi)

)2]E[(Gi − E(Gi)
)2]

+ C3︸ ︷︷ ︸
Structure

]γ
,

(II.5)

The most common choice for the exponent parameters are α = β = γ = 1; constants

C1, C2, are small values that prevent division by zero. When C3 = C2/2, (II.5)

simplifies to:

SSIM(f, g) =
2E[Fi] · E[Gi] + C1

(E[Fi])2 + (E[Gi])2 + C1

× 2E[Fi ·Gi]− 2E[Fi] · E[Gi] + C2

E[(Fi − E[Fi])2] + E[(Gi − E[Gi])2] + C2

,

(II.6)

where the UPPERCASE letters denote the use of random variables. The similarity
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between the target image g and the ideal image f in (II.5) can be interpreted as

a proxy for FR-QA of g. In addition, SSIM has a few desirable characteristics for

assessing image denoising performance, including:

(1) SSIM(f, g) = SSIM(g, f).

(2) |SSIM(f, g)| ≤ 1.

(3) SSIM(f, g) = 1 if and only if f = g.

II.3 TRAINING PROCESS

Suppose φτ is a parametric image denoising function, with parameter τ . FR-QA is

commonly used to find the visually optimal parameter τT with the help of training

images [7]. This process is illustrated in Figure II.2. Given “ideal” training images

f (n), n ∈ [1, N ], make g(n)|f (n) ∼ P(f (n)) as a Poisson corrupted version of f (n).

FR-QA optimal parameter τT is

τT = arg max
τ

1

N

N∑
n=1

[
QAFR{f (n), φτ (g

(n))}
]
, (II.7)

Once the “training image optimal” denoising parameter τT is found, this parameter is

fixed—i.e. φτT is used in the camera once the camera is deployed. However, training

image-based optimization is limited by whether the training images are representative

of the actual data or images used in practice. Moreover, the visually optimal denoising

parameter is highly dependent on the scene content. Figure II.3 shows the the wavelet

domain SSIM (WSSIM) score [9] corresponding to the image denoising method of

[12] over a various range of thresholding values τ (See (II.7) for further details). As

evidenced by the differences in QAFR{f (1), φτ (g
(1))} and QAFR{f (2), φτ (g

(2))}, the

visually optimal τ value τFR = arg maxτ QAFR{f (n), φτ (g
(n))} is highly dependent on

7



f (n) g(n)

{φτ1(g(n)),
φτ2(g

(n)),
...

} {QAFR{f (n), φτ1(g
(n)},

QAFR{f (n), φτ2(g
(n)},

...

}{τ1, τ2, . . . }

Figure II.2: Optimizing denoising parameter τ using training images f (n).

Figure II.3: Example illustrating the dependence of denoising threshold parameter τ
on the scene content. Shown here using wavelet-based denoising of [12] and wavelet
FR-QA of [9].

the scene content. Thus the training image optimal threshold value τT does not always

yield a favorable denoising result. It is therefore more desirable to select a visually

optimal τ for each scene. This is the subject of our investigation in the remainder of

this thesis.
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II.4 HAAR WAVELET TRANSFORM AND SKELLAM DISTRIBU-

TION

Let t0 = g. A J level discrete Haar wavelet1 transform coefficients g 7→ (tJ , yJ , yJ−1, . . . , y1)

are comprised of sums and differences [13, 14]:


jth subband scaling coefficients tji = tj−1

2i + tj−1
2i+1

jth subband wavelet coefficients yji = tj−1
2i − t

j−1
2i+1.

(II.8)

Similarly, let f 7→ (sJ , xJ , . . . , x1) denote Haar wavelet transform of the noise-free

image f :


jth subband scaling coefficients sji = sj−1

2i + sj−1
2i+1

jth subband wavelet coefficients xji = sj−1
2i − s

j−1
2i+1.

. (II.9)

The focus of this thesis is on estimation of xj based on tj and yj. The estimate of

noise-free image f is then recovered by taking inverse transformation of xj and sj.

Recalling tji |s
j
i ∼ P(sji ), y

j
i is a difference of two Poisson variables—the distribution

of yji |f is said to be Skellam [3]:

P [Y j
i = y|Xj

i = x, Sji = s] =e−s
(
s+ x

s− x

) y
2

Iy(
√
s2 − x2), (II.10)

From this perspective, the goal is to estimate the “Skellam mean” (latent noise-

free wavelet coefficient) x based on the “Skellam corrupted” variable y and “Poisson

corrupted” variable t; f is recovered via the inverse wavelet transform. Let λi(y
j, tj) be

any Skellam mean estimator of xji , and define the `2 risk of λ(yj, tj) (where λi(y
j, tj) ∈

1Ideas presented in 1D wavelet here generalize to 2D straightforwardly.
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`2(Z2)) functional as:

γ[λ, xj] = E[‖λ(Y j, T j)−Xj
i ‖2]. (II.11)

The unbiased estimate of risk for Skellam mean estimation λ(yj, tj) was first reported

by Hirakawa et al. [3, 12]:

Theorem 1. Let λi(y
j, tj) = yji + θ(yj, tj). Then γ̂[λ|yj, tj] :=

E[(T ji − Y
j
i )θ(Y j + ei, T

j − ei) + θ(Y j, T j)2 + T ji (II.12)

− (T ji + Y j
i )θ(Y j − ei, T j − ei) + 2Y j

i θ(Y
j, T j)]

is an unbiased estimate of γ[λ, xj], where ei is the ith standard basis.

Indeed, γ̂ in Theorem 1 is an example of a CR-WMSE for Poisson imagery based on

FR-WMSE γ (here we use “W” to denote in wavelet domain). The significance of

Theorem 1 is that the `2 risk of a given wavelet shrinkage operator λ(yj, tj) is knowable

without the access to the latent variables xj and sj (or their distributions). A well

known application of Theorem 1 is PURELET—λτ (y
j, tj) is a parametric function,

whose parameter τ is the minimizer of the form [4]:

(τγ = arg min
τ
γ[λτ , x

j]) = (τγ̂ = arg min
τ
γ̂[λτ |yj, tj]). (II.13)

10



CHAPTER III

BLIND STRUCTURAL SIMILARITY INDEX METRIC

III.1 PIXEL DOMAIN CR-SSIM

Thanks in part to the consistent performance against human visual system, SSIM is

a popular FR-QA metric commonly used to benchmark performance of various image

denoising algorithms. Let φ be any denoising operator, and simply replace g in (II.6)

by φ, we define FR-SSIM functional as

ρ[φ, f ] :=
2E[Fi] · E[φ(G)]

(E[Fi])2 + (E[φ(G)])2
× 2E[Fi · φ(G)]− 2E[Fi] · E[φ(G)]

E[(Fi − E[Fi])2 + (φ(G)− E[φ(G)])2]
. (III.1)

The dependence of ρ[φ] on the statistics of f , which are E[Fi], E[(Fi − E[Fi])
2], and

E[Fi · φ(G)], precludes direct application of FR-SSIM to infer the denoising quality

of φ without the access to f .

However, these statics estimable indirectly with the help of the “corrupted reference”

g. From moment matching:

E[Fi] =E[Gi]. (III.2)

E[Gi|Fi] =E[G2
i |Fi]− (E[Gi|Fi])2

⇔ E
[
E[Gi|Fi]

]
=E
[
E[G2

i |Fi]
]
− E

[
(E[Gi|Fi])2

]
⇔ E[F 2

i ] =E[G2
i ]− E[Gi]. (III.3)

11



Thus the variance of f can be computed as:

E[(Fi − E[Fi])
2] =E[F 2

i ]− (E[Fi])
2

=E[G2
i ]− E[Gi]− (E[Gi])

2

=E[(Gi − E[Gi])
2]− E[Gi]. (III.4)

In addition, the following relation of the discrete exponential families applies to Pois-

son count variables [15, 16]:

E[Fi · φ(G)] = E[Gi · φ(G− ei)]. (III.5)

Here ei is a standard vector ei = (0, . . . , 0, 1, 0, . . . , 0)T where i denotes the location

of the 1 in the vector. Substituting above to (III.1), we arrive at a CR-SSIM ρ̂:

ρ̂[φ|g] =
2E[Gi] · E[φ(G)]

(E[Gi])2 + (E[φ(G)])2
(III.6)

× 2E[Gi · φ(G− ei)]− 2E[Gi] · E[φ(G)]

E[(Gi − E[Gi])2 − E[Gi] + (φ(G)− E[φ(G)])2]
.

We emphasize that CR-SSIM in (III.6) is identical to the FR-SSIM in (III.1) —i.e.

ρ̂[φ, f ] = ρ[φ|g].

The main advantage to ρ̂[·] is that it does not rely on the intensity image f and

is therefore computable from g and φ(g). There are a few differences between ρ[·]

and ρ̂[·] in implementation, however. First, the expectation operator E[·] must be

approximated by ensemble average, which is computed as a Gaussian weighted average

over a local window near location i [8]. By the law of large numbers, SSIMs ρ[·] and

ρ̂[·] agree when the local window is larger. When the window size is too small, the

empirical statistics may be unstable (in this case, FR-SSIM as well as CR-SSIM

12



scores fluctuate). Second, φ(G − ei) in CR-SSIM refers to the result of denoising

when ith Poisson count Gi is replaced with Gi − 1 (while Gj for ∀j 6= i remains the

same). Denoising by φ(G− ei) must be repeated N times (where N is the number of

pixels in an image). One may reduce the computational complexity by inferring the

overall image quality from a random subset of N pixels to compute the φ(G − ei).

Third, ρ̂[φ|g] is a biased estimate of ρ[φ, f ] when ensemble average replaces the image

statistics (since ρ̂[φ|g] is a ratio of sample averages). The bias vanishes as the window

size is increased.

III.2 WAVELET DOMAIN CR-SSIM

Many image denoising methods operate in a (linear) transform domain. Haar wavelet

transform is well matched for the Poisson image denoising [3]. Though the wavelet

version of FR-SSIM (FR-WSSIM) was originally developed for complex wavelet trans-

form [9], we adopt this for the Haar wavelet domain. This is convenient for parametric

Skellam mean estimation (e.g. [3, 4]), as parameters can be optimized one subband at

a time (combining all subbands via the inverse wavelet transform makes the param-

eter search space prohibitively large). Let λ(yj, tj) be any Skellam mean estimation

operator. Then the FR-WSSIM is

δ[λ, xj] =
2E[Xj

i λ(Y j, T j)]

E[(Xj
i )

2 + λ(Y j, T j)2]
. (III.7)

The simplicity of wavelet domain FR-SSIM stems from the fact that mean wavelet

value is zero (E[Xj
i ] = E[Y j

i ] = 0). Again, the dependence of δ[λ, xj] on the statistics

of xji (E[Xj
i λ(Y j, T j)] and E[(Xj

i )
2]) makes FR-WSSIM incompatible with real world

scenarios.

13



To develop the CR-WSSIM, the moment matching yields [3]:

E[(Xj
i )

2] = E[(Y j
i )2 − T ji ]. (III.8)

Proof of (III.8) follows from (II.8) and (II.9). Specifically, denote T j−1
2i =

T ji + Y j
i

2
=

Y +
i , T j−1

2i+1 =
T ji − Y

j
i

2
= Y −

i , similarly Sj−1
2i = X+

i and Sj−1
2i+1 = X−

i . Thus Y +
i |X+

i ∼

P(X+
i ) and Y −

i |X−
i ∼ P(X−

i ) [3]. Therefore recalling (III.2):

E[(Xj
i )

2] =E[(X+
i −X−

i ) · (X+
i −X−

i )]

=E[(X+
i )2 + (X−

i )2 − (Sji )
2 − (Xj

i )
2

2
]

⇔ E[(Xj
i )

2] =E[2(X+
i )2 + 2(X−

i )2 − (Sji )
2]

=E[2((Y +
i )2 − Y +

i ) + 2((Y −
i )2 − Y −

i )− ((T ji )2 − T ji )]

=E[(Y j
i )2 − T ji ].

(III.9)

Next, recalling (II.8), we have the relation

E[Xj
i λ(Y j, T j)] = E[(Sj−1

2i − S
j−1
2i+1)λ(Y j, T j)], (III.10)

where by (III.5) and (II.8) we have

E[Sj−1
2i λ(Y j, T j)] =E[T j−1

2i λ(Y j − ei, T j − ei)] (III.11)

=E[(T ji + Y j
i )λ(Y j − ei, T j − ei)]/2,

E[Sj−1
2i+1λ(Y j, T j)] =E[(T ji − Y

j
i )λ(Y j + ei, T

j − ei)]/2.
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Combining, we arrive at the wavelet version of CR-SSIM:

δ̂[λ|yj, tj] =
E[(Y j

i + T ji )λ(Y j − ei, T j − ei)
E[(Y j

i )2 − T ji + λ(Y j, T j)2]

+
E[(Y j

i − T
j
i )λ(Y j + ei, T

j − ei)]
E[(Y j

i )2 − T ji + λ(Y j, T j)2]
.

(III.12)

As before, the ensemble averages within local window replaces the expectation oper-

ator. Unlike the pixel domain CR-SSIM ρ̂, the standard basis ei in (III.11) is only

a minor inconvenience. Since a typical wavelet-based denoising function λ(yj, tj) de-

pends only a few coefficients in yj = (yj1, . . . , y
j
N) and tj = (tj1, . . . , t

j
N), denoising

procedure λ(yj ± ei, tj − ei) only needs to be repeated a few times.
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CHAPTER IV

EXPERIMENTS

IV.1 FR/CR-QA PERFORMANCE COMPARISON

The following experiments use a bivariate Skellam thresholding [3]:

λτ (Y
j
i , T

j
i ) = sgn(Y j

i ) max(Y j
i − τT

j
i , 0). (IV.1)

By no means do we suggest that this is the best Poisson image denoising technique—

with only one parameter in each subband, it is convenient for illustrating the behavior

of CR-(W)SSIM. Pseudorandom Poisson count data was created from McGill Cali-

brated image dataset in [17] that was converted into a linear grayscale image. Figure

IV.1 shows an example of selecting a threshold value τ ∈ [0, 1] in (IV.1) over a three

level Haar wavelet decomposition (9 wavelet subbands in total). SSIM scores in Fig-

ure IV.1(g) are shown with a restriction that a single threshold value is applied to

all subbands (to keep the search space size reasonable). (W)SSIM scores in Figure

IV.1(g-h, j-l) depicts “per subband” quality assessment. The proposed CR-(W)SSIM

yields a fairly accurate prediction of FR-(W)SSIM, especially when the WSSIM score

is already high (see Figure IV.1(i)). Figure IV.1(h) also shows the WMSE scores,

which has a strikingly different trajectory than WSSIM. Besides the fact that it is

difficult to determine the optimal threshold due to its relative flatness, WMSE optimal

threshold value clearly oversmoothes compared to the WSSIM optimal result. This
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(a) Ideal intensity (b) Poisson corrupted (c) CR-WMSE optimal

(d) FR-WSSIM optimal (e) CR-WSSIM optimal (f) Training optimal

(g) FR-/CR-SSIM&MSE (h) D1 FR-/CR-/Training- (i) FR- vs. CR-WSSIM

WSSIM&WMSE

(j) D2 FR-/CR-/Training- (k) H1 FR-/CR-/Training- (l) H2 FR-/CR-/Training-

WSSIM & WMSE WSSIM & WMSE WSSIM & WMSE

Figure IV.1: Example of Poisson image denoising [3]. (a-b) Simulated ideal and noisy images.
(d-e) CR-WSSIM optimal reconstruction is virtually identical to the FR-WSSIM optimal one. (c)
By comparison, WMSE optimal image is oversmoothed. (f) Training optimal one is undersmoothed.
(g) SSIM scores as a function of threshold value. (h) Finest diagonal subband WSSIM/MSE scores
as a function of threshold value. Different color arrows indicate where to choose optimal parameters.
FR-QA (green) achieves the maximum. (i) CR-WSSIM score as a function of FR-WSSIM. 45o line
indicates a perfect match. (j-l) Some other subbands.
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is consistent with Figure IV.1(c-e), where “WSSIM optimal” image yields a sharper

image (albeit slightly noisier in appearance) compared to the “WMSE optimal” one.

However, same as we discussed in ChapterIII.1, δ̂(λ|yj, tj) becomes a biased estimate

of δ(λ, xj) since image statistic is replaced by limited samples average. The prob-

ability of such bias could be magnified when noise level is increasing. Table IV.2

summarizes the denoising results over 1000 images in database of [17]. The average

intensity E[G] is a proxy for the level of noise seen in the image (smaller E[G] indi-

cates more noise). We report the average and the minimum WSSIM score of nine

wavelet subbands of each image, averaged over 1000 images. δ[y, x] is the average

qualities of the noisy coefficients compared to the attainable WSSIM. The δ[λτδ , x]

is the maximum attainable WSSIM score for this database. δ[λτδ̂ , x] is the WSSIM

score (the performance) of corresponding CR-WSSIM optimization λτδ̂(y, t). When

τδ ≈ τδ̂, we achieve the desiderata: δ[λτδ , x] ≈ δ[λτδ̂ , x]. WMSE optimal denoising by

comparison yields far worse WSSIM scores. In Table IV.1, we report the deviation of

τδ̂ and τT from the desired τδ.
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Table IV.1: Averaged deviation of τδ̂, τγ̂ and τT from the desired τδ. For any wavelet
subband, τδ = arg maxτ δ[λτ , x], τδ̂ = arg maxτ δ̂[λτ |y, t], τγ̂ = arg minτ γ̂[λτ |y, t], and

τT = arg max
τ

1

N

N∑
n=1

[
δ[x(n), λτ (y

(n), t(n))]
]
. Numbers below are the averaged value of

nine subbands deviations.
E[G] |τδ − τδ̂| |τδ − τT| |τδ − τγ̂|

128.00 0.001 0.003 0.010
18.286 0.009 0.013 0.075
9.846 0.014 0.022 0.133
5.818 0.022 0.032 0.193
4.571 0.029 0.036 0.220
2.000 0.076 0.087 0.278

Table IV.2: Comparison of FR-,CR-,Training-WSSIM and CR-WMSE over 1000 im-
ages in [17]: We report the average and minimum WSSIM score of nine wavelet
subbands of each image, averaged over 1000 images. δ[y, x] is the average qualities of
the noisy image compared to the attainable WSSIM. The δ[λτδ , x] is the maximum
attainable WSSIM score for this database. Numbers below are (average/minimum).

E[G] δ[y, x] δ[λτδ , x] δ[λτδ̂ , x] δ[λτT , x] δ[λτγ̂ , x]

128.00 0.719/0.465 0.728/0.500 0.727/0.499 0.726/0.498 0.708/0.449
18.286 0.495/0.196 0.516/0.236 0.513/0.232 0.512/0.229 0.480/0.143
9.846 0.420/0.136 0.442/0.172 0.440/0.168 0.437/0.167 0.398/0.074
5.818 0.357/0.096 0.381/0.129 0.378/0.124 0.377/0.122 0.330/0.039
4.571 0.329/0.081 0.354/0.112 0.350/0.107 0.350/0.105 0.299/0.029
2.000 0.239/0.043 0.267/0.075 0.261/0.063 0.261/0.062 0.207/0.029
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IV.2 TRAINING-/CR-WSSIM PERFORMANCE COMPARISON

To compare the performance of our proposed method with training process described

in Section II.3, we conducted a Four-fold cross-validation [18] over database in [17].

An example of denoising comparisons is shown in Figure IV.1. In Figure IV.1 (f) the

restored image is undersmoothed. In Figure IV.1 (h,j-l), red line indicates Training-

WSSIM for comparing with FR-/CR-WSSIM. For this image, training selected τTs

are lower than τδs or τδ̂s, resulting in undersmoothing. Figure IV.2 shows similar

examples comparing QA performance of training- and CR-QA. It is clear from Figure

IV.2 that the optimal image threshold depends on the scene. A fixed τT is only

adequate when it is close to τδ. By comparison, τδ̂ is also image content dependent,

and is a better approximation to τδ in most cases. When noise is extremely high, the

CR-QA approximation to FR-QA also deteriorates however, so the difference between

τδ and τδ̂ maybe widen.

The denoising results are illustrated in Figure IV.3 and IV.4. The visual quality of

the training image optimal denoised image (undersmoothed) in Figure IV.3-4 (f) and

WMSE optimal denoised image (oversmoothed) in Figure IV.3-4 (c) seem to be lower

than the FR-WSSIM optimal image in (d) or than the CR-WSSIM optimal image in

(e).

Table IV.1 and IV.2 also summarizes the performance of training image optimal

denoising δ[λτT , x]. Even in presence of high noise (E[G] = 2), we observe the gen-

eral trend δ[λτδ , x] ≥ δ[λτδ̂ , x] ≥ δ[λτT , x]. Figure IV.5 plots log(δ̄[λτδ̂ , x]) against

log(δ̄[λτT , x]). Here we use δ̄[·] to denote the overall coefficient similarity of nine sub-

bands for each image [9], estimating the quality of target image. Obviously, it is clear

that the reconstruction qualities δ̄[λτδ̂ , x] and δ̄[λτT , x] are comparable when WSSIM
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score is already high; however, when WSSIM score is low, δ̄[λτδ̂ , x] clearly outperforms

δ̄[λτT , x].

We argue that the overall visual quality of a denoised image, especially undersmooth

phenomenon is more sensitive to the low WSSIM score subband. This is just the

drawback that training-WSSIM encounters. Consider Figure IV.6. In Figure IV.6

(b-f), we deliberately lowered the quality of one wavelet subband. We can see from

the images that the overall visual quality is highly sensitive to such processing when

WSSIM score is already low. However, when WSSIM score is high, lowering the

quality makes little difference.
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(a) Modestly noisy images (b) Modestly noisy images
finest diagonal subband coarser diagonal subband

(c) Modestly noisy images (d) Higher noisy images
finest horizontal subband finest horizontal subband

(e) Higher noisy images (f) Higher noisy images
finest diagonal subband coarser diagonal subband

Figure IV.2: QA Performance comparison of Training/CR- vs. FR-QA: (a-c) Lower
noisy image (E[G] = 9.846) finest diagonal/coarser diagonal/finest horizontal sub-
bands. (d-f) Higher noisy image (E[G] = 2) finest diagonal/coarser diagonal/finest
horizontal subbands.
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(a) Noise free image (b) Corrupted image (c) CR-WMSE optimal

δH1 = .060

δV 1 = .055

δD1 = .030

δH2 = .185

δV 2 = .164

δD2 = .073

δH3 = .383

δV 3 = .357

δD3 = .215

δH1 = .060

δV 1 = .054

δD1 = .020

δH2 = .178

δV 2 = .151

δD2 = .073

δH3 = .380

δV 3 = .356

δD3 = .206

δH1 = .055

δV 1 = .048

δD1 = .018

δH2 = .180

δV 2 = .156

δD2 = .067

δH3 = .383

δV 3 = .357

δD3 = .203

(d) FR-WSSIM optimal (e) CR-WSSIM optimal (f) Training optimal

Figure IV.3: Restoration results, Training-/CR-WSSIM vs. FR-WSSIM for testing
image No.3 in FigureIV.2 (d-f)
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(a) Noise free image (b) Corrupted image (c) CR-WMSE optimal
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δH2 = .291

δV 2 = .195

δD2 = .123
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δD1 = .046

δH2 = .282

δV 2 = .194
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δH3 = .455

δV 3 = .323

δD3 = .258

δH1 = .133

δV 1 = .092

δD1 = .043

δH2 = .291

δV 2 = .191

δD2 = .121

δH3 = .462

δV 3 = .323

δD3 = .252

(d) FR-WSSIM optimal (e) CR-WSSIM optimal (f) Training optimal

Figure IV.4: Restoration results, Training-/CR-WSSIM vs. FR-WSSIM for testing
image No.2 in FigureIV.2 (d-f)
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(a) Modestly noisy images (b) High noisy images

Figure IV.5: Comparison of overall similarity(dB) between CR-WSSIM optimal
restorations and Training-WSSIM optimal restorations.
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(a) Smoother restoration (b) Corrupt V2 subband (c) Corrupt D3 subband

δH1 = .049 − .013

δV 1 = .053

δD1 = .024

δH2 = .118

δV 2 = .120

δD2 = .071

δH3 = .101

δV 3 = .099

δD3 = .129

δH1 = .049

δV 1 = .053

δD1 = .024 − 0.014

δH2 = .118

δV 2 = .120

δD2 = .071

δH3 = .101

δV 3 = .099

δD3 = .129

δH1 = .049

δV 1 = .053

δD1 = .024

δH2 = .118

δV 2 = .120

δD2 = .071 − .025

δH3 = .101

δV 3 = .099

δD3 = .129

(c) Corrupt H1 subband (d) Corrupt D1 subband (e) Corrupt D2 subband

Figure IV.6: Undersmoothing is sensitive to low WSSIM score subbands: (a) Rel-
atively smoother restoration. (b-c) Lowing higher quality subbands. (d-f) Lowing
lower quality subbands.
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IV.3 REAL CAMERA SENSOR DATA EXPERIMENT

Towards the goal of enabling FR-QA (SSIM in particular) in real image systems, we

seek to understand the impact CR-QA has on the denoising of actual image sensor

data. The image was captured using Nikon D90 in raw sensor mode with all manual

settings; we downsampled Bayer data by 2 × 2 to avoid extra processing by demo-

saicking. Each scene was captured twice in succession—once with and once without

the Gretag Macbeth Colorchecker [1]. The raw sensor data value h is assumed to

be an affine transformation of the Poisson count variable hi = αgi + β where the

affine parameters α and β were determined from the Colorchecker. Input to image

denoising and CR-QA was the recovered Poisson count data g = h−β
α

. The process

of finding α and β is illustrated as Figure IV.7. Although the direct comparison of

FR-QA and CR-QA is not possible, the general trends of CR-WSSIM seen in earlier

simulated experiments remains in tact. Figure IV.8 (d-f) shows a unique peak in

WSSIM score indicating a visually optimal threshold value. Comparing Figures IV.8

(d) and (e), WSSIM peak broadens and shifts to the left when denoising a coarser

scale, presumably because the signal-to-noise ratio of Skellam variable improves in a

coarse scale. Figures IV.8 (d-f) make it clear that WSSIM and WMSE based opti-

mization yield different results—whether WMSE over-/under-smoothing relative to

WSSIM depends on the subband. By visual inspection, “WSSIM optimal” denoising

has less noisy appearance but yet maintains higher contrast. We captured and tested

on a diverse set of real sensor data—they generally follow the trends shown in Figure

IV.8.
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(a) Sensor data with Colorchecker (b) Undo affine transform

Figure IV.7: Affine parameters determination. (a) Sensor data with Colorchecker
(color filled in). (b) After recovery, E[Gi] = E[(Gi − E[Gi])

2]

(a) camera raw (b) CR-WSSIM (c) CR-WMSE
sensor data optimal denoising optimal denoising

(d) WSSIM/WMSE for (e) WSSIM/WMSE for (f) WSSIM/WMSE for
finest diagonal subband coarser diagonal subband finest horizontal subband

Figure IV.8: Application of CR-QA to real image sensor data. (a) Taken with Nikon
D90 calibrated to recover Poisson data from raw sensor data. (b-c) WSSIM optimal
denoising result maintains contrast and appears less noisy than the WMSE optimal
reconstruction. (d) WSSIM optimal threshold value is smaller than the WMSE opti-
mal values. (e-f) WSSIM optimal threshold results in more shrinkage than the WMSE
optimal one.
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CHAPTER V

CONCLUSION

The goal of CR-QA is to enable FR-QA in the context of image restoration with the

help of corrupted version of the ideal reference image. Although CR-QA version of

SSIM for AWGN image denoising is already known [7], the CR-(W)SSIM for Poisson

corruption we proposed is more appropriate for real imaging systems [1]. Though we

focused exclusively on SSIM to meet the page limit, we emphasize that Poisson CR-

QA is not limited to SSIM. Our experiments with real camera sensor data confirms

that it is possible to determine how faithfully the denoised Poisson image reproduced

the latent intensity image. This contrasts the current practices of evaluating denoising

performance on real camera sensor data that largely rely on visual inspection, and

NR-QA that has yet to gain widespread adoption. CR-QA clearly complements the

existing workflow of a typical image denoising algorithm development involving FR-

QA evaluation of denoised image from simulated sensor data. Hence CR-QA provides

a systematic and meaningful way to bridge the evaluation of real and simulated

denoising results.
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