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ABSTRACT

This paper deals with noise parameter estimation from a single im-

age under Poisson-Gaussian noise statistics. The problem is formu-

lated within a mixed discrete-continuous optimization framework.

The proposed approach jointly estimates the signal of interest and the

noise parameters. This is achieved by introducing an adjustable reg-

ularization term inside an optimized criterion, together with a data

fidelity error measure. The optimal solution is sought iteratively by

alternating the minimization of a label field and of a noise param-

eter vector. Noise parameters are updated at each iteration using

an Expectation-Maximization approach. The proposed algorithm is

inspired from a spatial regularization approach for vector quantiza-

tion. We illustrate the usefulness of our approach on macroconfocal

images. The identified noise parameters are applied to a denoising

algorithm, so yielding a fully automatic denoising scheme.

Index Terms— Poisson-Gaussian noise, parameter estimation,

Expectation-Maximization, proximal algorithms, discrete optimiza-

tion.

1. INTRODUCTION

Estimation of noise parameters is a classical problem in signal and

image processing. For instance, Donoho [1] proposed to employ a

robust Gaussian variance estimator from the wavelet coefficients of

an image, known as the median absolute deviation estimator (MAD).

Since then, many alternative methods addressing this problem have

been proposed [2], [3], [4], possibly from a Bayesian perspective,

e.g. in [5]. A more general problem was investigated in [6] where

the authors consider the mixture of a white Gaussian noise and a

random impulsive noise.

Unfortunately, in many cases, the imaging noise is not simply

additive. Due to the quantum nature of light, the images are de-

graded by shot noise. Thermal noise may also play a prominent role

in some modalities, e.g. astronomical imaging. Although a Gaussian

approximation is sufficient in some cases, one may need to consider

a noise model where the mean or the variance depends on the im-

age intensity. Consequently, studies related to image recovery in

the presence of signal dependent noise constitutes an active research

area. Examples include restoration methods in the presence of Pois-

son noise [7] and more recently Poisson-Gaussian models [8], [9].
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However, the associated noise identification problems have not yet

been extensively studied in the literature.

In this paper, we address the problem of estimating the parame-

ters of a Poisson-Gaussian noise from a single image. The problem

is formulated within a variational framework. The proposed alter-

nating optimization algorithm jointly estimates the signal of interest

and the noise parameters from a single noise realization. We con-

sider various choices of regularization functions promoting sparsity,

including nonconvex ones.

The estimation of noise parameters in the presence of multiplica-

tive or Poisson noise is more challenging than for additive stationary

Gaussian noise. The additional challenge stems from the noise non-

stationarity. There have been many attempts to address this issue, for

instance in the context of CCD imaging [10], radar [11], and confo-

cal microscopy [12]. However, all these approaches share a similar

structure. Namely, they proceed by first determining pixel groups

with uniform intensities [13], [14] followed by a parameter fitting

procedure. Similarly to most of these techniques, our approach in-

cludes both a segmentation and an estimation process. However, un-

like the previous works, the two main steps are repeated iteratively.

At each iteration, the new partition and noise parameter estimates

are obtained by minimizing a cost function.

The remaining of this paper is organized as follows. The model

is introduced in Section 2. Then, the considered parameter estima-

tion problem and the proposed methodological and numerical solu-

tions are described in Section 3. We provide experimental results in

Section 4, where the performance of our approach is illustrated using

macroconfocal data. Finally, Section 5 concludes the paper.

2. MODEL

Let x be the original image of size N × M . Its values are as-

sumed to belong to a finite set {u1, . . . , uK} where K ∈ N
∗ is the

number of distinct intensity values. We will denote by u the vector

[u1, . . . , uK ]⊤ ∈ R
K . We consider a partition P = (Dk)1≤k≤K of

the image support S = {1, . . . , N} × {1, . . . ,M}, which is related

to the image x through the following relation:

x = (uiP(s))s∈S ∈ {u1, . . . , uK}N×M , (1)

where
(
iP(s)

)
s∈S

∈ I = {1, . . . ,K}N×M is a label image defined

as

(∀s ∈ S)(∀k ∈ {1, . . . ,K}) iP(s) = k ⇔ s ∈ Dk. (2)



Since x is a function of iP and u, it will be denoted by xiP,u through-

out this paper.

The observed noisy image y ∈ R
N×M is a realization of a ran-

dom vector Y and is such that

y = α q + w (3)

where α is a positive scaling factor, and q = (q(s))
s∈S

(resp. w)

are realizations of mutually independent random vectors Q (resp.

W = (W (s))
s∈S

) with independent components. More precisely,

Q ∼ P(xiP,u) (4)

(∀s ∈ S) W (s) ∼ N (c, σ2), (5)

where c ∈ R and σ ∈ (0,+∞) are the mean and the standard

deviation of the Gaussian noise component, respectively, and P(x)
denotes a multivariate Poisson distribution with mean vector x.

Then, the parameter estimation problem corresponds to find-

ing a vector of unknown noise parameters θ ∈ T , where θ =
[c, σ2, α, u⊤]⊤ and T is the parameter set which is here equal to

R × (0,+∞)2 × C, C being a closed convex subset of RK . The

unknown vector θ is related to the vector of observations y through

the probability density function of Y , which has the following form:

for every y =
(
y(s)

)
s∈S

∈ R
N×M ,

pY (y; iP, θ) =

K∏

k=1

∏

s∈Dk




+∞∑

q(s)=0

e−uk (uk)
q(s)

q(s)!

e
−

(y(s)−αq(s)−c)2

2σ2

√
2πσ2



 .

(6)

3. PROPOSED APPROACH

3.1. Problem formulation

We adopt a variational approach where the parameter vector θ is

estimated by minimizing a penalized criterion. We then solve

minimize
(iP,θ)∈I×T

Φ(θ, iP, y) + ρ(iP). (7)

The above function Φ is defined as the neg-log-likelihood of y:

Φ(θ, iP, y) = − log
(
pY (y; iP, θ)

)
(8)

and ρ is a regularization function aiming at incorporating a priori

information about the homogeneity of the level sets of the image.

Note that Problem (7) is nonconvex due to the fact that iP belongs to

a (nonconvex) set of discrete values.

3.2. Algorithm

We propose the following alternating optimization algorithm:

Algorithm 1 Proposed algorithm

Initialization:

Fix K ∈ N
∗ and θ(0) ∈ T .

Main loop:

For ℓ = 0, 1, . . .
i
(ℓ)
P

∈ argmin
iP∈I

Φ(θ(ℓ), iP, y) + ρ(iP)

θ(ℓ+1) ∈ argmin
θ∈T

Φ(θ, i
(ℓ)
P
, y)

Assuming that noise parameters (c, σ2, α) are known, the above

algorithm reduces to the joint denoising-quantization algorithm pro-

posed in [15]. In particular, the first step of Algorithm 1, which

consists of searching iP, is unchanged. Classical discrete optimiza-

tion techniques are used for this purpose [16]. Additional difficulties

arise in the second step of Algorithm 1 since the minimized function

is no longer convex. However, we are able to use some of the results

of [17], where the problem of estimating Poisson-Gaussian noise pa-

rameters from time series is addressed. The proposed method how-

ever required a large enough number of image realizations in order

to provide consistent estimates of the parameters.

3.3. Parameter update

In order to solve numerically the nonconvex problem stated in the

second step of Algorithm 1, we propose to employ the Expectation-

Maximization (EM) algorithm [18]. In such settings, the EM algo-

rithm generates a sequence of estimates (θ(ℓ))ℓ∈N which is given by

(∀ℓ ∈ N) θ(ℓ+1) = argmin
θ∈T

Φ(θ | θ(ℓ)) (9)

where

Φ(θ | θ(ℓ)) = 1

2σ2

∑

s∈S

EQ|Y =y,θ(ℓ) [(y(s)− αQ(s)− c)2]

+
NM

2
ln(σ2) +

K∑

k=1

card(D
(ℓ)
k )uk

−
K∑

k=1

lnuk

∑

s∈D
(ℓ)
k

EQ|R=r,θ(ℓ) [Q(s)] (10)

and (Q(s))s∈S are the components of Q as defined in (4) with iP =

i
(ℓ)
P

.

This leads to the following operations to be performed at each

iteration ℓ:

1. Find u(ℓ+1) as a solution of

u(ℓ+1) ∈ argmin
u∈RK

ϑ(u) (11)

where ϑ(u) =
∑K

k=1 ϑk(uk), and, for every k ∈ {1, . . . ,K},

ϑk(uk) = card(D
(ℓ)
k )uk − lnuk

∑

s∈D
(ℓ)
k

EQ|R=r,θ(ℓ) [Q(s)].

(12)

In the unconstrained case when C = R
K , we have then

u(ℓ+1) =

∑
s∈D

(ℓ)
k

EQ|R=r,θ(ℓ) [Q(s)]

card(D
(ℓ)
k )

. (13)

On the other hand, for some regularization terms [15], set

C is useful to impose a total order constraint. This amounts

to minimizing ϑ under the constraints that V u ∈ D =
[δ,+∞[×[0,+∞[K−1 where δ is some small positive value,

and V is the linear operator defined as

V : RK → R
K

(u1, . . . , uK) 7→
(
u1, u2 − u1, . . . , uK − uK−1

)
. (14)



2. Determine c(ℓ+1) and α(ℓ+1) by solving the following system

of linear equations:




NM

∑

s

EQ|Y =y,θ(ℓ) [Q(s)]

∑

s

EQ|Y =y,θ(ℓ) [Q(s)]
∑

s

EQ|Y =y,θ(ℓ) [Q(s)2]




[
c(ℓ+1)

α(ℓ+1)

]

=





∑

s

y(s)

∑

s

y(s)EQ|Y =y,θ(ℓ) [Q(s)]



 . (15)

3. Compute (σ2)(ℓ+1) as

∑

s

y(s)
(
y(s)− α(ℓ+1)

EQ|Y =y,θ(ℓ) [Q(s)]− c(ℓ+1)
)

NM
. (16)

Note that even when a closed form solution to Problem (11) does

not exist, it can still be solved efficiently using proximal tools. We

propose to solve numerically this problem by using a primal-dual

proximal algorithm [19].

Algorithm 2 Primal-dual algorithm for solving (11)

Initialization

γ ∈ (0,+∞), u
(0)
1 ∈ R

K , v
(0)
1 ∈ R

K .

Main loop

For j = 0, . . .

w
(j)
1 = u(j) − γV ⊤v

(j)
1

p
(j)
1 = proxγϑ(w

(j)
1 )

w
(j)
2 = v

(j)
1 + γV u(j)

p
(j)
2 = w

(j)
2 − γPD(γ−1w

(j)
2 )

v
(j+1)
1 = v

(j)
1 − w

(j)
2 + p

(j)
2 + γV p

(j)
1

u(j+1) = u(j) − w
(j)
1 + p

(j)
1 − γV ⊤p

(j)
2

In the above algorithm, we denote the projector onto the closed

convex set D by PD . The proximity operator of γϑ with γ > 0
admits a closed form expression [20] and it is given by

(
∀u = (uk)1≤k≤K ∈ R

K
)

proxγϑ(u) =
(
proxγϑk

(uk)
)
1≤k≤K

(17)

where, for every k ∈ {1, . . . ,K},

proxγϑk
(uk) =

1

2

(
uk − card(Dk) (18)

+

√
|uk − card(Dk)|2 + 4

∑

s∈Dk

EQ|R=r,θ(ℓ) [Q(s)]
)
.

The convergence of the primal-dual algorithm is guaranteed, using

the following result deduced from [19, Theorem 4.2].

Theorem 3.1 Under the assumptions that γ ∈ [ǫ, (1− ǫ)/β] where

ǫ ∈ (0, 1/(β+1)) and β = ‖V ‖, there exists a minimizer û of (11)

such that the sequences
(
u(j)

)

j∈N

and
(
p
(j)
1

)

j∈N

converge to û.

Concerning the computation of the required conditional expec-

tation values, it can be shown that, for every s ∈ S,

EQ|Y =y,θ(ℓ) [Q(s)] =
ζ
(ℓ)
s

η
(ℓ)
s

and EQ|Y =y,θ(ℓ) [Q(s)2] =
ξ
(ℓ)
s

η
(ℓ)
s

(19)

where

ζs(θ
(ℓ)) =

∞∑

q(s)=0

Πs(θ
(ℓ), 1, q(s)) (20)

ηs(θ
(ℓ)) =

∞∑

q(s)=0

Πs(θ
(ℓ), 0, q(s)) (21)

ξs(θ
(ℓ)) =

∞∑

q(s)=0

Πs(θ
(ℓ), 1, q(s)) +

∞∑

q(s)=0

Πs(θ
(ℓ), 2, q(s))

(22)

In these formulas, for every (d, q(s)) ∈ N
2,

Πs(θ, d, q(s)) = exp

(
− (y(s)− α(q(s) + d)− c)2

2σ2

)

×
(u

i
(ℓ)
P

(s)
)q(s)+d

q(s)!
. (23)

The infinite summations in (20), (21) and (22) are approximated by

finite sums with the following bounds:

q(s)+ = q(s)∗ +∆
σ

α
, q(s)− = q(s)∗ −∆

σ

α

where q(s)∗ = σ2

α2W

(
α2

σ2 ui
(ℓ)
P

(s)
e

α

σ2 (y(s)−c−dα)
)

. Here, W de-

notes the Lambert function and ∆ > 0. This choice has been shown

to ensure a fast decay of the approximation error as a function of ∆.

3.4. Patch-based initialization

Since Problem (7) is nonconvex, the proposed approach is sensitive

to initialization. In the following, we propose an initialization pro-

cedure based on image patches [21]. Firstly, the observed image y is

decomposed into non overlapping patches Θy = {Θy1, . . . ,ΘyO},

where O stands for the total number of patches. Next, we estimate

the vectors mean (Θy) ∈ R
O and Var (Θy) ∈ R

O , whose ele-

ments are the mean and the variance over the pixels belonging to

each patch, respectively. Under the assumption that the intensity of

each patch is constant, the mean and variance of the patch is given

by: for every o ∈ {1, . . . , O},

[mean (Θy)]o = αυo + c (24)

[var (Θy)]o = α2υo + σ2
(25)

where υo ∈ {u1, . . . , uK}. Although, the assumption about the

constant intensity of each patch is not exactly satisfied, an approxi-

mation θ(0) of the parameter vector is given by

• α(0) = [Var (Θy)]o1 / [mean (Θy)]o1 ,

where o1 = argmaxo∈{1,...,O} [mean (Θy)]o

• c(0) = mino∈{1,...,O} [mean (Θy)]o

•
(
σ2

)(0)
= [Var (Θy)]o2 ,

where o2 = argmino∈{1,...,O} [mean (Θy)]o.



• u
(0)
1 = ǫ, where ǫ is a small value greater than 0, and (∀k ∈

{2, . . . ,K}) u(0)
k = u

(0)
k−1 + umax/(K − 1). The maximum

intensity value umax of x is assumed to be known.

Note that in contrast with the approach proposed in [17] the EM

algorithm is initialized with an improved set of parameters at each

iteration.

4. RESULTS

We evaluate the robustness of our model under different working

conditions. For all the presented experiments, the patch size is 12×
12, K = 20, and ǫ = 0.2. The regularization ρ is an anisotropic

total variation-like function defined as follows: let (n,m) denote

the coordinates of a generic pixel s,

ρ(iP) = µ
(N−1∑

n=1

M∑

m=1

ψ(|iP(n+ 1,m)− iP(n,m)|)

+

N∑

n=1

M−1∑

m=1

ψ(|iP(n,m+ 1)− iP(n,m)|)
)
, µ ≥ 0. (26)

We set the regularization parameter µ to 1.3 when ψ is set to a binary

cost function defined as

(∀ξ ∈ [0,+∞)) ψ(ξ) =

{
0 if ξ = 0

1 otherwise,
(27)

and 0.8 when ψ is the identity function.

The results of the time series noise identification procedure de-

scribed in [17] provide a high quality image, akin to a ground truth

for real microscopy data (Figs 1 (a,e)). In order to show the versa-

tility of our model, we use ψ defined as the identity function for the

experiments presented in Figs 1 (a-d), while the binary cost func-

tion (27) is used for the experiment illustrated in Figs 1 (e-h). For

the identity function, a total order constraint needs to be enforced

in the EM step. For these two experiments, umax is set to 150 and

40 respectively. In the first case, the image in Fig. 1 (a) was cor-

rupted by Poisson-Gaussian noise with parameters α = 5, c = 150,

and σ2 = 125. The identified noise parameters were α̂ = 4.89,

ĉ = 156.35, and σ̂2 = 115.2 (Fig. 1 (c)). In the second case of

Fig. 1 (e) the estimated value of α = 20, c = 150, and σ2 = 1000
were α̂ = 19.5, ĉ = 142, and σ̂2 = 907 (Fig. 1 (g)).

In Fig. 1, the estimated noise parameters are subject to small re-

maining errors with respect to the true values. The quantized image,

a side result of our procedure, is also displayed. These results show

that our procedure provides reliable results on real data that can be

fed to a denoising procedure, e.g. [8]. The corresponding PSNR val-

ues are 28.45 dB and 28.82 dB for the images in Figs 1(d) and 1(h),

respectively. For comparison, and to emphasize the importance of

accurate parameter estimation, we averaged the PSNR of 50 image

denoising realizations. These had parameters set around the optimal

value, i.e we allowed parameters to vary following a Gaussian distri-

bution with a standard deviation of 10% of the optimal value. This

resulted in PSNRs of only 26.43 dB and 26.20 dB, respectively.

5. CONCLUSIONS

We have proposed a reliable Poisson-Gaussian noise parameter esti-

mation method for imaging applications, which only requires a sin-

gle noisy image as input. The derived alternating minimization pro-

cedure allows us to estimate the noise parameters required by many

denoising procedures. Here we used the method proposed in [8].

However, other denoising procedures can be used as well. The simu-

lation results demonstrate the usefulness of our approach on confocal

images. To our knowledge, this is the first blind estimation method

for handling Poisson-Gaussian noise with nonzero background. In

our future work, we plan to extend the proposed image noise estima-

tion approach and to investigate its use for other parametric forms of

complex noise probability distributions.

(a) Confocal macroscopy
ground truth (1)

(b) Noisy PSNR = 19.51 dB
(α = 5, c = 150, σ2

= 125)

(c) Noise parameter iden. (α̂ =

4.89,ĉ = 156.35, σ̂2
= 115.2)

(d) Denoising result
PSNR = 28.45 dB

(e) Confocal macroscopy
ground truth (2)

(f) Noisy PSNR=19.35 (α =

20, c = 150, σ2
= 1000)

(g) Noise parameter iden. (α̂ =

19.5, ĉ = 142, σ̂2
= 907)

(h) Denoising result
PSNR = 28.82 dB

Fig. 1. Single image noise identification results.
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