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ABSTRACT

This paper proposes a fast and accurate approximation al-

gorithm to convolve a L1 Gaussian function with images. Our

new algorithm is based on splitting a pixel domain into rep-

resentative regions where we can efficiently perform discrete

convolutions. Our algorithm is applicable to non-uniform pix-

els with linear computational complexity. We examine it nu-

merically in terms of speed, precision, and quality. We also

introduce a novel edge-aware filter by using our algorithm.

Index Terms— Laplace Distribution, Fast Discrete Con-

volution, Edge-aware Filtering, Domain Transform

1. INTRODUCTION

Gaussian convolution is a very powerful, fundamental tool

that has a wide variety of useful applications in signal and

image processing. Computing a discrete analog of Gaussian

convolution, also called a Gauss transform [1], quickly and

accurately is important, and it has been studied for linear

and nonlinear image filtering, e.g., edge-aware smoothing [2,

3, 4] and kernel density estimation [5]. Unfortunately, per-

forming an exact Gauss transform requires quadratic com-

putational complexity. A naive truncation algorithm often

produces undesired artifacts because it leads to a sinc-like

kernel shape in its Fourier domain similar to a box kernel

(Fig. 1). Therefore, various approximation methods have

been suggested such as recursive filtering [6, 7, 8, 9, 10],

polynomial splines [11], Taylor expansions [2], trigonometric

kernels [12], Fast Fourier Transforms (FFT) [13, 3], kd-trees

[14], and Fast Gauss Transforms (FGT) [1, 15]. However, the

box kernel is still popular [16, 2, 17, 18] because of its high

applicability to regular image structures, and better approx-

imations are in demand for integrating large image domains

with Gaussian kernels.

In this paper, we propose a novel, fast, and accurate ap-

proximation algorithm for discrete Gaussian convolutions on

images. Our algorithm is based on splitting a pixel domain

by using representative points (poles) and decomposing the

equation into terms that can be pre-computed efficiently. Our

main idea is to use the L1 norm instead of the popular L2

norm for distances between image pixels. The L1 norm Gaus-

sian G(x) = exp(− |x|
σ
) at a point x ∈ R, where σ > 0 is

the standard deviation, also known as Laplace distribution in

statistics and probability theory [19], has many of the same

useful properties as the L2 Gaussian. It is separable, and its

integral over R gives a finite number
∫∞

−∞
G(x)dx = 2σ.

Moreover, the Fourier spectrum of G(·), which becomes a

rational quadratic function (σ
√

2/π)/(1 + σ2x2) and is fre-

quently employed for filter kernels, does not have extrema,

except for the point at x = 0. Thus, the normalized convolu-

tion
∫

G(x− y)I(y)dy/
∫

G(x− y)dy of an image intensity

I = I(x) ∈ R at x combined with a separable implementa-

tion yields us nice smoothing results (Fig. 1). Our algorithm

is applicable to non-uniform pixels with linear computational

complexity (constant w.r.t. σ). We examine our algorithm

numerically and compare it with FFT, B-spline, FGT, naive

truncation, and box kernel approaches in terms of speed, ap-

proximation precision, and visual quality. We also introduce

a novel edge-aware filter by using our algorithm.
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Fig. 1: Convolutions via L1 and L2 Gaussians and box kernels. The

bottom images are the corresponding gradient magnitudes |∇I|.

2. L1 GAUSSIAN WITH DOMAIN SPLITTING

Consider a set of n points {xj} on R where x1 ≤ x2 ≤ ... ≤
xn. For a fixed point x1, the L1 norm distance between xi

and xj is decomposed by splitting its domain as |xi − xj | =
{

|xi − x1| − |xj − x1| if x1 ≤ xj ≤ xi : xj ∈ D1,
−|xi − x1|+ |xj − x1| if x1 ≤ xi < xj : xj ∈ D2.

Thus, an L1 Gaussian G(xi − xj) can also be represented by
{

exp(− |xi−x1|
σ

−
−|xj−x1|

σ
) = G(xi−x1)

G(xj−x1)
if xj ∈ D1,

exp(−−|xi−x1|
σ

−
|xj−x1|

σ
) =

G(xj−x1)
G(xi−x1)

if xj ∈ D2.



Consider an L1 Gauss transform J(xj) =
∑n

i=1 G(xi −
xj)I(xi) with I(x) ∈ R at xj . By splitting the domain into

D1 and D2, we introduce a novel representation of J(xj) by

J(xj) = I(xj) + {G(xj − x1)
∑j−1

i=1
1

G(xi−x1)
I(xi)}+

+{ 1
G(xj−x1)

∑n
i=j+1 G(xi − x1)I(xi)}.

(1)

Equation (1) can be calculated by O(3n) operations (big O
notation [20]) for all j = 1, 2, ..., n (linear computational

complexity), since
∑j−1

i=1
1

G(xi−x1)
I(xi) and

∑n
i=j+1 G(xi−

x1)I(xi) are pre-computed once for all j = 1, 2, ...n. Sorting

{xj} is not necessary when {xj} consists of image pixel coor-

dinates including transformed non-uniform values (e.g., [17,

18]). Computing equation (1) efficiently and accurately is not

trivial if some numerical issue exists, for instance, 1
G(xi−x1)

may cause an overflow for huge values of |xi − x1|.

3. FAST AND ACCURATE APPROXIMATION

Inspired by the Fast Multipole Method (FMM) [21] and FGT,

but with a different approach, we introduce a set of m repre-

sentative poles {αk} on R instead of using the fixed point x1

to avoid the above-mentioned numerical problem.
Assuming that α1 < α2 < ... < αm, the domain splitting

of |xi − xj | around the pole αk is given by |xi − xj | =





























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Fig. 2: Domains and illustrations of γ(·) and γ2(·).

Thus, the L1 Gaussian G(xi − xj) is decomposed by
G(xi−αk)
G(xj−αk)

,
G(xj−αk)
G(xi−αk)

, and G(xj − αk)G(xi − αk) for xj ,

which belong to Ω1, Ω2, and Ω3, respectively. By using this

domain splitting with the poles {αk}, equation (1) becomes

J(xj) = I(xj) + Cj +Dj + Ej , (2)

Cj = {G(xj − αγ(j))

j−1
∑

i=γ2(γ(j))

1

G(xi − αγ(j))
I(xi)}+

+{
1

G(xj − αγ(j))

γ2(γ(j)+1)−1
∑

i=j+1

G(xi − αγ(j))I(xi)},

Dj =

γ(j)−1
∑

k=1

G(xj − αk)Ak, Ej =

m
∑

k=γ(j)+1

G(xj − αk)Bk,

Ak =

γ2(k+1)−1
∑

i=γ2(k)

I(xi)

G(xi − αk)
, Bk =

γ2(k+1)−1
∑

i=γ2(k)

G(xi − αk)I(xi)

where γ(j) = k such that αk ≤ xj < αk+1 and γ2(j) =
min(k) such that αj ≤ xk < αj+1, see Fig. 2.

To avoid numerical instability, the inequality exp(
|αk+1−αk|

σ
)

< MAX should be held where MAX is the maximum value

of precision (i.e., double floating-point precision in our nu-

merical experiments). Therefore, we choose the distances

between poles by |αk+1 − αk| = ϕσ log(MAX), where

ϕ ∈ (0, 1) is a parameter. In practice, we use ϕ = 0.5 and

poles {αk} = {0, w/m, 2w/m, 3w/m, ..., (m − 1)w/m}
where w = |xn − x1|. In addition, m is determined by

m = [ xn−x1

αk+1−αk
], where [] is the ceiling function, which

results in m ≪ n in general cases.

The terms Ak, Bk, and Cj can be computed to O(n) for

the set {xj}. The terms Dj and Ej are also L1 Gauss trans-

forms that need O(nm + m). Note that equation (2) is nu-

merically stable because of how the {αk} are chosen.

Since G(αk−xj) becomes numerically zero if |αk−xj | >
σ log(MAX), we approximate Dj and Ej by

Dj ≈ G(xj − αγ(j)−1)Aγ(j)−1, (3)

Ej ≈ G(xj − αγ(j)+1)Bγ(j)+1 (4)

where Dj ≈ 0 if γ(j) < 2, Ej ≈ 0 if γ(j) > n− 1, and their

complexities reduce from O(nm+m) to O(m).
The approximation error at xj is given by

Errorj =

γ(j)−2
∑

k=1

G(xj − αk)Ak +

m
∑

k=γ(j)+2

G(xj − αk)Bk.

This implies that the precision of our approximation is equiv-

alent to truncating a sum within a 3ϕσ log(MAX) region:

J(xj) ≈

γ2(γ(j)+1)−1
∑

i=γ2(γ(j)−1)

G(xi − xj)I(xi). (5)

This approximation is very accurate as long as maxi(I(xi))
< exp(ϕ log(MAX)) = MAXϕ, which is the most frequent

case scenario in image processing applications. Equation (5)

with a naive truncation algorithm requires time-consuming

computations of O(3nϕσ logMAX), but our algorithm re-

quires only O(4n+ 3m) operations (const. O(1) w.r.t. σ).

3.1. Multidimensional Algorithm and Edge-preserving

Although our domain splitting technique can be extended to

multidimensional cases, we employ a separable implementa-

tion for 2D images because of its simplicity and because the

L1 Gaussian is also separable like L2, i.e., there should not

be much difference between their results for linear filtering.

For a given image with a user-specified σ, we first perform

a normalized Gauss transform J(xj)/
∑n

i=1 G(xj − xi) for

{xj}, j = 1, 2, ..., n for each column. Then we perform a

normalized Gauss transform for each row by using the filtered

values of the columns. The color channels and denominator

are separately processed.



For each Gauss transformation, the poles {αk} are cal-

culated first. The terms Aj , Bj , and Cj are computed for

j = 1, 2, ..., n. Then, the transformed values are obtained

by evaluating equation (2) by using equations (3) and (4) for

j = 1, 2, ..., n. For linear filtering with uniform pixels, {αk}
and exp(·) are pre-computed once a dimension. Fig. 3 shows

a smoothing example via our algorithm with varying σ.

Fig. 3: Smoothing via our algorithm with σ ∈ {5, 20, 55}.

Fig. 4: Edge-aware filtering via our algorithm with σ
φ
∈ {5, 20}.

We also adapt our algorithm to an edge-aware L1 Gaus-

sian filter based on the domain transformation technique [17].

The main idea is to use geodesic distances on the image man-

ifold [22] instead of Euclidean distances between pixels.

Consider a point p = (xp, I(xp)) on the image manifold

(x, I(x)) ∈ R
4, x ∈ R where I = I(x) ∈ R

3 is a color vector

at x. The distance from the origin (0, I(0)) to p on the image

manifold gives a transformation T (xp) : R
4 → R where

T (xp) =

∫ xp

0

√

1 + λ2|∇I(t)|2 dt, λ = φ(σs/σ), (6)

σs is the standard deviation of the image intensity, and φ > 0
is a parameter that controls edge-awareness. Convolving I

with G(·) on the domain {T (xj)} provides an edge-aware

filter because the gradient magnitude |∇I(t)| yields a large

value at the image edges. Because we only assume the or-

ders of {xj} and {αk}, non-uniform values {T (xj)}, where

T (x1) ≤ T (x2) ≤ ... ≤ T (xn), are employed in our edge-

aware filter (Fig. 4). In contrast to [17], which established

a box kernel with L1 geodesic distance, our filter consists of

the L1 Gaussian kernel with the L2 geodesic distance (6).

4. COMPARISON AND EVALUATION

All numerical experiments in this paper were performed on

a Core2 Extreme X9770 (3.2 GHz quad core, no paralleliza-

tion was used) PC with 16GB RAM and 64 bit OS. We com-

pared our algorithm with separable implementations of the

FFT using FFTW [23], FGTs [1, 15] with a sharp error es-

timator [24], quadratic (QBS) and cubic (CBS) cardinal B-

splines [25], naive truncations (Nr) within their radii r ∈
{0.5, 1, 2, 3}σ, and box kernel (Box) in linear filtering. The

box kernel filter was implemented by using a moving aver-

age method [26] with its box radius equal to σ. We also used

two FGT parameter settings, namely fast (FGT1) and accu-

rate (FGT2) that employ (2, 10) and (6, 1) for the interaction

radius and allowed error of [1], respectively. The naive trun-

cations were performed by convolving a (2r+1) length array

consisting of pre-computed L1 Gaussian values. Recursive

box filtering with a scaling factor
√

(k + 1)/12/σ and 0.5
radius converges to a L2 Gaussian [27], which when iterated

(k+1) times yields a k degree cardinal B-spline. We applied

the moving average method with 3 and 4 iterations for QBS

and CBS, respectively.
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Fig. 6: Performance evaluations. Speed: megapixels/second.

We employed color images with 12 values of σ (every 5
values from 5 to 60) for 11 image sizes (5122 to 51202 pix-

els). Fig. 5 shows the averaged computational timings over



σ w.r.t. image sizes. Our algorithm achieves linear computa-

tional complexity and the fastest speed in these experiments.

We evaluated the maximum error Emax = max(|di|),
i ∈ {1, 2, ...,M}, where Iei and Iai are the exact and approxi-

mated color values at xi, di = Iei − Iai , and M is the number

of 2D image pixels. Moreover, we examined the peak signal-

to-noise ratio (PSNR; the larger, the better) [2, 3] by aver-

aging −10log10(
1
M

∑M
i=1(

di

max(Ie
i
,Ia

i
) )

2) over all color chan-

nels. Here, FGTs, QBS, and CBS were compared with the ex-

act L2 Gaussian convolutions (the others used the exact L1).

Fig. 6 illustrates the precision versus speed by compar-

ing values of the averaged PSNR and maximum Emax over

σ, image sizes, and color channels. As expected from the-

ory, our algorithm, FFT, and FGT2 provide high quality re-

sults according to PSNR and Emax. The naive truncations Nr

and box kernel result not only in low approximation preci-

sion, but also produce undesired visual artifacts (Fig. 7). At

first glance, N3 seems to perform well but it also produces se-

rious artifacts around sharp features and generates false edges

similar to the box filter (Fig. 1); see |∇|∇I|| and |∇I|
1
2

in Fig. 7. These naive approximations, including B-splines

and aggressive setting of FGT (see Fig. 7, bottom), are not

able to suppress oscillations of their kernel shapes in corre-

sponding Fourier domains in the same way as the box kernel.

This leads to low-quality results, both numerically (PSNR and

Emax) and visually. Surprisingly, our algorithm gives bet-

ter results than FFT w.r.t. both PSNR and visual inspection

(Fig. 8). Overall, our algorithm provides the best quality and

performance in terms of numerical errors, and visual inspec-

tions, and achieves the satisfactory processing speed of 7.35
megapixels per second (3.66 M/sec. for non-uniform pixels).

Figs. 9 and 10 demonstrate applications of our algorithm

in edge-aware filtering (which requires integration over a

large domain [13, 17]) and detail enhancement, respectively.

A simple enhancement technique If+3(I−If ) is used where

If is the edge-aware filtered image. In a few seconds, our

edge-aware filter successfully processes a megapixel image

and produces a nice enhanced image without halo artifacts.

5. CONCLUSION

We have proposed a fast and accurate L1 Gaussian convolu-

tion algorithm for images. Our new algorithm is based on

splitting a pixel domain into representative regions in which

discrete convolutions are efficiently approximated. Our algo-

rithm, which is applicable to non-uniform pixels with linear

computational complexity (constant w.r.t. σ), achieves high

performance results in terms of speed, precision, and quality.

We also introduced a novel edge-aware filter that uses our al-

gorithm. Since our algorithm can process HDR images with-

out heuristics, applications to computational photography, en-

gineering, and natural science hold future promise. We also

would like to apply our algorithm to machine learning such

as L1 regression [28] and kernel density estimation [5].

E Our N3

N2 N1 N0.5

E Our N3

Input E Our N3

Input QBS CBS FGT1

Fig. 7: Visual comparisons and artifacts (σ = 15). E: Exact. The

3rd and 4th columns from top correspond to |∇|∇I|| and |∇I|
1
2 ,

respectively. The other columns show |∇I|.

Input Exact Our FFT

Exact Our FFT

Fig. 8: Visual comparisons of |∇I| with FFT (σ = 10).

Fig. 9: Edge-aware filtering via our algorithm with φ = 0.1 and

σ = 20 took 5.1 seconds (3 iterations [17]) for 2593 x 1945 pixels.

Fig. 10: Edge-aware filtering with detail enhancement via our algo-

rithm with φ = 0.1 and σ = 20. The left, center, and right images

correspond to input, filtered, and enhanced images, respectively.
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Supplemental

In the paper, the precision described in Fig. 6 was measured by using 16 bit images for the exact L1 and L2 filterings. Here

we show more accurate evaluations in Fig. S.1 by using 64 bit images for the exact L1 and L2 filterings, where setting of

experiments is same as in Fig. 6. The PSNR of FGT2 and our (also Emax of FFT and our) results become significantly better

than the results reported in Fig. 6.
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Emax 0.11×10−12 0.05 0.77 0.13 3.9 3.61

Speed 7.35 2.58 0.9 0.28 1.8 1.37
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Fig. S.1: Performance evaluations. Speed: megapixels/second.


