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ABSTRACT

Many real classification tasks are oriented to sequence (neighbor) la-
beling, that is, assigning a label to every sample of a signal while tak-
ing into account the sequentiality (or neighborhood) of the samples.
This is normally approached by first filtering the data and then per-
forming classification. In consequence, both processes are optimized
separately, with no guarantee of global optimality. In this work we
utilize Bayesian modeling and inference to jointly learn a classifier
and estimate an optimal filterbank. Variational Bayesian inference is
used to approximate the posterior distributions of all unknowns, re-
sulting in an iterative procedure to estimate the classifier parameters
and the filterbank coefficients. In the experimental section we show,
using synthetic and real data, that the proposed method compares
favorably with other classification/filtering approaches, without the
need of parameter tuning.

Index Terms— Gaussian Process classification, filter estima-
tion, analysis representation.

1. INTRODUCTION

Many real classification tasks assign a label to every sample of a
signal (or pixel of an image) while taking into account the sequen-
tiality (or vicinity) of the samples. This task is normally approached
by first filtering the data and then performing classification. For in-
stance, a super resolution method can be applied to a multispectral
image [1] followed by a classification method on the improved mul-
tispectral image [2]; or an improved passive millimeter-wave image
can be obtained [3] followed by an object detection procedure [4].

Using filtering as a pre-processing step before learning a clas-
sifier does not guarantee optimal joint performance. To solve this
problem, we propose a Bayesian framework to learn a classifier, at
the same time estimate an optimal filterbank to improve the classifier
performance.

Let us assume that we have access to a multichannel sequential
signal or multichannel sequential features extracted from the signal.
We use the term “multichannel features” to refer to both concepts for
simplicity. Let Z = [z1, . .., zn] be the matrix including these orig-
inal input features, where each feature z; is of length B. Instead of
performing classification directly on the features Z, we would like
to compute new features X = [x1,...,Xn] S0 as to optimize the
classification performance. Z and X can be related in two different
ways. The first method, based on the analysis representation, obtains
X as a linear transformation of Z, leading to X = AZ where A de-
fines a linear filterbank whose coefficients must be estimated. The
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analysis representation appears in many signal reconstruction prob-
lems. For instance, it can be used to improve the classification of
EEG data in brain-computer interfaces [5], or to discover causality
interaction in functional MRI [6].

In the second method, based on the synthesis representation, Z
is represented using a dictionary D that has to be learnt from a set
of samples, that is, Z = DX. The new features X are to be used to
classify the samples. The synthesis representation model is related,
for instance, to the use of discriminative Gaussian Process Latent
Variable Models (GPLVM) [7], where a linear discriminant prior on
the latent variables is introduced and bears some connections with
learning discriminative dictionaries (see, for instance, [8, 9]). In this
work we use the analysis representation.

The idea of jointly optimizing a filter and a classifier dates back
to the 1990s within the field of artificial neural networks. It was, for
instance, used in convolutional networks [10] or to define a neural
model for temporal processing [11, 12]. Recently, the same principle
is used in [13] where filters are learnt jointly with a support vector
machine (SVM) to perform classification.

In this work the filtering/classification tasks are formulated as
a single Bayesian inference problem. Variational inference is used
to learn the classifier and the optimal filterbank coefficients as well
as the model parameters. The rest of this paper is organized as fol-
lows. In Section 2 Bayesian modeling is presented to use analysis
representation on images. Variational Inference is performed in Sec-
tion 3. The classification rule is introduced in Section 4. In Section 5
results for both synthetic and real experiments are presented and fi-
nally Section 6 concludes the paper.

2. HIERARCHICAL BAYESIAN MODELING

Let us assume that during the training phase we have access to Z =
[Z1, . ..,zn~], where each z; is of length B, and their corresponding
labels y = [y1,...,yn]" with y; € {0,1}. To obtain the new
features each band is filtered with a spatial filter a; &€ RkQ, 1=
1,..., B, producing
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where each z; ; is a column vector of size k? containing the neigh-
borhood of the j-th sample in the ¢-th band. To reduce the number
of coefficients in A to be estimated, we only perform intraband fil-
tering. Interband filtering is not performed because the classifier
utilizes multiband information.



To model the classification function relating each sample x; to
its corresponding label y; we follow a two stage procedure. First, we
introduce a latent variable f; which is related to y; by a sigmoidal
function y; = o (f;) = 1/(1 + e ). Letf = [f1,..., fn] be
the values of the latent function at X = [x1, ..., xx], then the joint
likelihood factorizes to

p(ylf) = H[G

In the second stage, to model f, we define on f; a Gaussian Process,
which depends on X, and so we write

p(fIX, p, vy, 0) =

where C = 7Kx + o1, and Kx = (k(xi,%;)),4,j =1,...,N,
is the kernel used. In this work linear and Gaussian kernels are con-
sidered (see [14] for details).

To model X, instead of enforcing Eq. (1), we consider a weaker
constraint by defining the following pseudo-observation model
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where || - ||r is the Frobenius norm. When 8 — oo we obtain the
constraint X = AZ. In Sect. 3 we explain how to configure the

penalty S.
With no much prior information on the filterbank coefficients,
we follow the approach in [13] and use the following prior on A,

Hp ailo;) =

where o = (a1,..., B)T are the precision coefficients, which are
modeled using Gamma distributions, that is,

Hp ; O(Ha B exp

The parameters a; and b; are treated as deterministic whose values
are set to small values (e.g., 10™°) to obtain broad hyperpriors.
Finally, the joint distributions factorizes as

p(y,©) = p(y[f)p(fIX, 1, v,0)p(X|A, Z, B)p(Alo)p(a).
where © = {f, X, A, o, 11,7, 0}, and Z is fixed.
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3. BAYESIAN INFERENCE AND VARIATIONAL
APPROXIMATION

In our Bayesian framework, unknown variables are estimated from
the posterior distribution p(©]y) = p(y,©)/p(y). However this
distribution is not tractable because p(y) can not be calculated. To
alleviate this problem, variational methods are used to approximate
it by a tractable distribution of the form
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The variational criterion used to find q(©) is the minimization
of the Kullback-Leibler (KL) divergence [14], given by

Cra (4(O)||p(©]y)) = / a(©) log p‘g%)demm ®)

which is always non negative and equal zero if and only if the distri-
butions q(©) and p(©[y) coincide.

Due to the form of the joint likelihood defined in Eq. (2), the KL
divergence cannot be evaluated. To solve this problem we bound the
joint likelihood in Eq. (2), using the variational lower bound [14, 15]
u—¢§
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where A\(§) = i (Hi,& — %) Thus the joint likelihood is
bounded as:

p(ylf) > exp {(y - 307t - fTAf} (10)

N
<o {€"A¢+ 517¢} [[o(-6) = HO.£.0)

where &€ = (£1,...,&n)7T, and A = Diag(A(&1),..., A(éN)). The
inequality in Eq. (10) leads to the following lower bound for the joint
probability distribution:

p(y,©) >M(y,0,§) = an
H(y,f, &)p(fIX, u, v, 0)p(X|A, Z, B)p(Ala)p(c).

Finally, the KL divergence in Eq. (8) is majorized by
Cki(q(©)[lp(Bly)) < Cki(a(©)[M(y, ©,£)) + const.  (12)

Although a new set of unknowns & has been included, now the
KL divergence between q(©) and M(y, ©, ) is mathematically
tractable, and it can be used to calculate the posterior distribution
q(©). The optimal posterior distribution approximation is the given
by [14]

q(f) x exp [<1og M(y, @,£)>q(@9)] , (13)
where 6 € O, the set ©g represents the set difference © \ {6} and
the operator (-)4(e,) denotes expected value with respect to the dis-
tribution q(©y). For simplicity we use (u) to denote (u)q(u). In
this paper we assume that q(X), q(u), q(v) and q(o) are degen-
erate distributions. No constraints are imposed on q(f), q(a;) and
q().

Since (log M(y, ©, £))q(o,) i a quadratic function on f, its
posterior distribution approximation is a Gaussian distribution with
parameters

1
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The value where q() is degenerate is obtained by solving
o= argrrgnﬂOgM(y,@,E)}q(eu)- (15)

By differentiating (logM(y, ©,£))qo,) With respect to p and
equating to zero we obtain

- (u)TC™1
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Following the same procedure for v in Eq. (3) we obtain

Tr [CT'Z¢AKx] =0,

(16)
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where ~ is included in C. Then we use the following fixed point
algorithm (see [2] for details) to update ~y
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where the old value of v is used in the right hand side to obtain an
updated value in the left hand side. The same procedure is used on
o to obtain the updating rule

_ o (p1—pe)"CTICT (1l — pe)
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To estimate £ we solve the optimization problems
& = argmin(log M(y, ©, €))q(e). (19)

Differentiating and equating to zero we obtain

& =/ (1e)? + (Ze)is. (20
Since (log M(y, ©, §))q(e,,) is a quadratic function on a;, q(a;) is
a Gaussian distribution with parameters
(ai) = BEiZi(X)", i = (BZiZ] + (i)L2) ™', 2D
where X;,7 = 1..., B, represent the i-th row of X.

The posterior density of a;; becomes a Gamma distribution with
mean

2a; + k2
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Finally, to estimate X we solve
X = arg m)én(log M(y,©0,8))q0x)- (23)

For a linear kernel we have
X" = [4(C7'528) = 7€ (e — 1) (e — p1)"C

+ BIx 7' BZT (A)T. (24)

For a Gaussian kernel case with a fixed scale parameter, we obtain a
update rule for each component of X. Thus, for the p-th component
of x; we obtain

_ v wia(M&) +AE)))einxa (p) + Pay 7.
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where s is the scale parameter of the Gaussian kernel, v =
C s — pl), wiyj, W = (I + 20A + 29KxA)™", and
€;j = exp (—Hxi — Xj||2/252).

To configure the proximity operator penalty, 5, we multiply
Eq. (24) by :{’J%g and define 7 = % Hence, Equation (24) can
then be written as

X" = [*(1 —7)C™ (pe — pl) (p — p1)TC!
+(1—7)(CT'8e2A) + 7Ly |1 TZT(A)T. (26)

Note that 7 € [0,1] and when 7 = 1, we obtain X = (A)Z in
Eq. (26). For Gaussian kernels we proceed in the same manner but
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multiplying Eq. (25) by 275775

Let us now summarize the estimation procedure. Starting with
X% =A"Z, (K%)i; = k(x?,x}), a) = identity filter, af = 1,
,uO =0, 'yo =1,0=1C" = 'yOK())( + o°1, and 5? =1,
the method iterates until convergence between Eqgs. (14), (16), (17),
(18), (20), (21), (22) and (23). We use the old value of the parameter
in the right hand side of the estimations to obtain the new values in
the left hand side. For the value for 7, we have experimentally found
that using 7" = min(7™ 4 0.001, 1) made the iterative process
to first concentrate on the estimation of the model parameters and
then proceed to estimate the filter coefficients. See the experimen-
tal section to determine the initial value of 7. At convergence of
the estimation procedure we obtain the classifier and the filterbank
coefficients.

, (25)

Tpi

4. CLASSIFICATION OF NEW PIXELS

In order to classify a new sample z we transform it using the equa-
tion x = (A)z where (A) has been obtained at convergence of the
training phase and denote by fx its associated latent variable. Then
p(fx|f, X, x, i, v, o) is a Gaussian distribution with mean and vari-
ance

(f<lf,X, %, p1,7,0) = p+h"C™H(f — pl),
var(fx|f, X, x, i, v,0) = c— h'Cc™'n,
where ¢ = yk(x,x) and h = y(k(x,x1),...,k(x,xn))7 and v,

o and p have been provided by the proposed method at convergence.
We then have

p(fx‘y,X,X,/.h"%U) = /p(fx|f7X7X,M7’y’ U)N(f\ﬂf’zf)dﬂ
f

which is a Gaussian distribution with parameters

<fX|y7X7X7 122300 U> =u+ hTC_l(/Lf — ,LL]_),
var(fxly, X, %, 11,7,0) =h"C7'S¢C "h+ c—h"C 'h,

This leads to the following classification procedure
1 if
=10 i

5. EXPERIMENTAL RESULTS

p+h"C (s — p1) >0
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In this section synthetic and real experiments are conducted to eval-
uate the performance of the proposed method, named GPF. In both
experiments, we used filters of size 3 X 3,5 x 5,7 x 7and 9 x 9.
We ran the proposed method for different values of 7° in the interval
[0.1,0.9] with step 0.01 and selected the one giving the best clas-
sification results. GPF was compared with the SVMF method [13]
which jointly learn a SVM classifier and estimates a filterbank as
well as a GP classifier which does not filter the data. To do this,
SVM objective function is augmented with a regularization term on
the filters. Hence, in addition to the cost parameter of the SVM (C'),
the regularization coefficient of the filter (\) has to be selected. We
ran SVMF on (C, \) € {0.01,0.05,0.1,0.5,1, 5,10, 25, 50, 100}2
and selected the values producing the best performance.

To obtain unbiased conclusions from the results, ten indepen-
dent repetitions of the experiments were carried out. For each of
them, a training set of 40 randomly selected samples (20 from each
class) and a test set of 2000 samples were used. The Overall Ac-
curacy (OA), the estimated Cohen’s kappa statistic (k-index) and
Z-score are used as measures of accuracy and class agreement. We
also report the computational cost in seconds of each algorithm, im-
plemented using MATLAB® on a i7 at 2.80 GHz.

5.1. Synthetic data experiment

In the synthetic data experiment, we generated a 500 X 500 binary
image where black and white pixels alternate in a checkerboard fash-
ion. Observations in the class Co (black pixels) are generated by a
Gaussian distribution of mean 0.25 and standard deviation 0.4, ob-
servations of pixels in the class C1 (white pixels) are generated by a
Gaussian distribution of mean 0.75 and standard deviation 0.4. Fig-
ure 1a shows a zoom of the observation dataset. Notice that it is hard
to decide the class of some pixels by considering only their values.
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Fig. 1. (a) A set of observations of the synthetic dataset. (b) Filtered
observations with the estimated kernel. (c) Estimated 7 x 7 kernel.
(d) Classification map: dark blue Co, light yellow C;.

Table 1. Figures of merit for the synthetic experiment.

GPF SVMF

Sizes |70 | OA & Z [Time| C OA & Z [Time
3 X 3 |0.86]96.06 0.9212 106.75| 0.26 |0.1 5|95.84 0.9168 103.80] 0.30
5% 5 [0.86/99.72 0.9943 452.77| 0.31 |0.5 1[99.69 0.9938 444.85| 0.56
7x7 (087 100 1 co |1.02]05 100 1 co | 050
9x9 (087|100 1 oo | 1.69 0.5 100 1 oo | 0.60
No Filter| — |71.06 04314 21.39 | 0.05 |0.1 —|72.72 0.4537 22.74 |0.003
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However, in the filtered image, shown in Fig. 1b, it is easier to dis-
tinguish the class of each pixel. It is worth noting that the estimated
filter, depicted in Fig. 1c, alternates positive coefficients, in the po-
sition of pixels belonging to the class of kernel central pixel, with
negative coefficient, in the remainder positions. Figure 1d displays
the classification map for the image in Fig. 1a, with a 100% OA.

Mean values for OA, k-index and Z-score and the value of 7
providing the best classification results are reported in Table 1. The
proposed GPF method obtained an OA above 96% for all considered
filter sizes and, for sizes of 7 x 7 and 9 x 9, the estimated filter is
capable to linearly separate both class and a 100% OA is obtained.
In all the cases, an improvement of almost 30% is obtained over the
base case where the data are not filtered (see the last row of Table 1).
The computational cost of the algorithm is very limited needing only
between 0.26 and 1.69 seconds to perform both training and classi-
fication tasks. The figures of merit for the SVMF method are very
similar to those of the GPF although the proposed method scored
slightly better for the kernel sizes of 3 x 3 and 5 x 5.

5.2. Real data experiment

The dataset was extracted from a 7-bands satellite image of city of
Naples (Italy) captured by the Landsat TM sensor in 1995 in the
Urban Expansion Monitoring project (UrbEx) [16]. A small RGB
region of this image is displayed in Fig. 2a. A reference land cover
map was also provided by the Italian Institute of Statistics (ISTAT).
The goal is the discrimination of urban (C1) versus non-urban (Co)
land-cover classes. The reference land cover map for the image
in Fig. 2a is shown in Fig. 2b. Light yellow color represents urban
class, dark blue color represents non-urban and red corresponds to
pixels whose class is unknown.

In this experiment we used a Gaussian kernel with parameter
s = 100. This value was selected as the one giving the best results
for SVMF. Table 2 shows the mean values for OA, k-index and Z-
score for GPF and SVMF method. Baseline case results, when no
filtering is used, are also reported. GPF obtained over a 95% OA,
values above 0.90 of x-index and Z-score values close to 100 for all
filter sizes, while the running time moved from 0.48 to 1.62 seconds
as the kernel size increased. Those figures of merit indicates a small
but significant improvement over the baseline case. In this real sit-
uation, GPF consistently obtained better results than SVFEM for all
kernel sizes. Also, the proposed GPF method ran much faster than

(b)

OA =95.11, k=0.88,Z = 158.44

OA =96.67, k =0.92,Z=202.15

© ()
Fig. 2. (a) RGB representation of a small region of the real image.
(b) Its reference land cover map. (c) Classification map without fil-
tering. (d) Classification map with filtering.

Table 2. Figures of merit for the real experiment.

GPF SVMFE

Sizes |70 | OA & Z [Time|] C X[OA & 7 [ Time
3 x 3 |0.89|95.18 0.9036 95.02 | 0.48 | 50 100|93.92 0.8785 86.02| 6.25
5x 5 |0.87]95.78 0.9156 103.03| 0.64 [ 100 50 |93.16 0.8633 77.55|20.22
7% 7 10.90/95.64 0.9127 100.42| 0.81 | 100 50 [93.09 0.8618 76.93|51.15
9 x 9 [0.85(95.25 0.9049 95.50 | 1.62 | 100 50 [92.88 0.8558 74.61|79.81
No Filter| — |93.21 0.8542 77.15 | 0.34 [0.01 - |92.88 0.8577 74.93| 0.11

SVMF (more than 50 times faster in some cases).

To better understand the role of filtering in the proposed method,
Figures 2c¢ and 2d depict the classification map for the image in
Fig. 2a when no filtering was applied and when kernels of size 5 X 5
were estimated, respectively. The classification map when the image
is not filtered is quite noisy, specially at the boundary of urban and
non-urban areas, while the one for the filtered image exhibit more
homogeneous regions and, although some pixels are misclassified,
class boundaries are much better delimited. The figures of merit for
this particular area are shown under their corresponding map. Al-
though the OA for the filtered case is only a 1.5% better than the one
for the unfiltered case, filtering allows for a significantly better class
agreement reflected in a higher x-index and Z-score.

6. CONCLUSIONS

In this work we have presented a new method to jointly filter and
classify a signal or an image. Using Bayesian modeling and varia-
tional inference we have developed an iterative procedure to jointly
estimate the classifier parameters, the filterbank and the model pa-
rameters. In the experimental section we have shown that the esti-
mated filters helps to improve the classifier performance. The pro-
posed method has been compared with other classification/filtering
approaches, and experimental results have shown that the proposed
method is more accurate and efficient.
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