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ABSTRACT
In this paper, we propose a new class of search ordering algo-
rithms to reduce the computational cost of motion estimation
in video coding. We show that conventional search orderings,
such as spiral search, can weaken the filtering criterion of
rate-constrained successive elimination algorithms. Based
on this new insight, we derive a new search ordering that
takes into account the impact of the rate constraint. Our
simulation results demonstrate that, on average, the amount
of SAD operations required to encode the tested sequences, is
reduced by 2.86%, when compared to the H.264 JM reference
software’s implementation of spiral search. For sequences
with unpredictable motion, this reduction is greater than
5% and can exceed 10% when smaller block partitions are
evaluated.

Index Terms— Successive elimination algorithm, motion
estimation, H.264, Lagrange multiplier

1. INTRODUCTION

Motion estimation is a predominant task of most modern
video encoders. In the H.264 video encoding standard [1],
when motion estimation is used to encode a frame, it is
performed on every non-overlapping 16× 16 block. These
blocks are called current blocks. Motion estimation is also
performed inside the current block, for partitions of sizes
16×16, 16×8, 8×16, 8×8, 8×4, 4×8, 4×4. Motion estimation
consists of finding an optimal matching block in a search area
of size (2W+1)×(2W+1), whereW is the full pel length of
the search area. The blocks inside this search area are called
candidate blocks, and the search area can span over multiple
reference frames, and up to quarter pel precision is supported.

An exhaustive search algorithm (ESA) will obtain an
optimal match by evaluating each candidate block inside the
search area. The high computational complexity incurred
by evaluating the cost function for all possible candidate
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blocks allowed in H.264 limits practical applications of ESA
in modern encoders. Many algorithms reduce this compu-
tational complexity, and can be classified by whether or not
they preserve optimality. Algorithms that do not preserve
optimality often rely on the assumption of a monotonically
increasing match criterion around the location of the optimal
candidate block. When this assumption does not hold,
accuracy of the motion estimation is reduced, as it will
converge to a local minimum. Modern algorithms in this class
include zonal search algorithms [2, 3], which first evaluate
a set of predictors in order to constrain a local diamond or
square search to a very narrow part of the search area.

Optimality preserving algorithms often rely on known
inequalities, to avoid computing the cost function of candidate
blocks during the search process. Recent algorithms in this
class append more efficient filtering criteria to the successive
elimination algorithm (SEA) proposed in [4]. For example,
[5, 6] in their own way propose the use of partitions inside
blocks to improve filtering efficiency.

In [7], Coban and Mersereau modified the SEA to take
into account the number of bits required to encode the motion
vector of a candidate block, by altering the SEA criterion into
a rate-constrained filtering criterion. This alteration is in line
with the H.264 joint model reference software [8] where the
optimal matching candidate block is the best rate-constrained
match. H.264-based SEA algorithms have been proposed
in [9, 10].

Another way the filtering criterion can be improved is
via the candidate block search ordering used for motion
estimation. Spiral search ordering is known to outperform
a raster search ordering, and evaluates better candidate blocks
earlier in the search process, which in turn improves the
filtering criterion and allows more candidate blocks to be
skipped. That is why the spiral search ordering is used in
many implementations of SEA-based algorithms [6, 7, 9].
This must however not to be confused with SpiralPDE [11],
which is a spiral pattern used to sum the elements of a block.

In this paper, we propose a new class of candidate
block search ordering algorithms, known as rate-constrained
search ordering algorithms. We demonstrate that conven-
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tional search ordering algorithms, such as raster and spiral
search, can impair the filtering criterion of rate-constrained
successive elimination algorithms. Rate-constrained search
ordering algorithms do not lead to this impairment, making
them ideal for rate distortion contexts, like H.264 encoding.

This paper is organized as follows: In section 2, rate-
constrained successive elimination is described, and then
the motivations for rate-constrained search orderings are
explained. We describe the proposed search ordering in
section 3, which is derived from the rate-constrained criterion
used to filter candidate blocks. In section 4, experimental
results for various sequences and discussions of the results
are given. Finally, section 5 concludes this paper.

2. RATE-CONSTRAINED SUCCESSIVE
ELIMINATION ALGORITHMS

Successive Elimination Algorithms (SEA) are based on the
following inequality [4] :

(1)|B − C(xi,yi)|6 SAD(xi,yi) ,

where B is sum of the current block pixel values and
C(xi,yi) is the sum of the pixel values of the ith candidate
block located at position (xi,yi) in the search area. On the
right hand side, the SAD(xi,yi) function returns the sum
of the absolute differences between the pixel values of the
current block and those of the ith candidate block.

At first glance, the complexity of computing B and
C(xi,yi) might seem equivalent to that of computing the
SAD(xi,yi) function, but that is not the case, since Li and
Salari [4] also proposed an apriori fast block summation
technique. During motion estimation, the values of B and
C(xi,yi) are obtained with table lookups, as shown on lines 3
and 11 of Algorithm 1. As explained in [4], the overhead of
precaculating these sums is negligible and, overall, reduces
computational costs by 85% when compared to ESA.

The filtering criterion works in the following manner: for
a given candidate block, if the left-hand side of equation (1),
a lower bound for its SAD value, is higher than the current
best SAD value of the search area, then this candidate is
not optimal. Therefore, the current best SAD value is used
as a threshold to decide when to avoid computing the SAD
function.

The Rate-Constrained Successive Elimination Algo-
rithms, originally proposed by [7], states that to be optimal,
the ith candidate block must satisfy the following inequality:

(2)
|B−C(xi,yi)|+λR(xi,yi)

6SAD(x∗
i−1,y

∗
i−1) + λR(x∗

i−1,y
∗
i−1) ,

where λ is the Lagrange multiplier, a trade-off between
rate and distortion. Often referred to as rate, the R(x, y)
function returns the number of bits required to encode the
motion vector of the candidate block at position (x, y). The
term (x∗

i ,y
∗
i ) is the current best candidate block, having

considered the candidate blocks from 0 to i − 1 in the scan
ordering, and is such that:

(3)
∀n ∈ {0, . . . , i}

(
SAD(x∗

i ,y
∗
i ) + λR(x∗

i ,y
∗
i )

6 SAD(xn,yn) + λR(xn,yn)
)
.

It is important to note that the best candidate is no longer the
lowest SAD value, but the best rate-constrained SAD value.

Algorithm 1 details the implementation of a motion esti-
mation algorithm enhanced with a rate-constrained successive
elimination algorithm. More precisely, sumB and sumC are

Algorithm 1 Motion estimation algorithm enhanced with the
rate-constrained successive elimination algorithm.

1: function MOTIONESTIMATION(block, minCost)
2: i∗ ← −1 . negative when no better candidate is found
3: B ← sumB[block.x][block.y]
4: for i← 0 to numCand do
5: x← ordering[i].x
6: y ← ordering[i].y
7: cost← λ×R(x, y)
8: if cost > minCost then
9: return minCost

10: end if
11: C ← sumC[block.x+ x][block.y + y]
12: if |B − C|< minCost− cost then
13: cost← cost + SAD(x, y)
14: if cost < minCost then
15: minCost← cost
16: i∗ ← i
17: end if
18: end if
19: end for
20: return minCost, i∗

21: end function

lookup tables for the precalculated block sums, ordering is
a lookup table for candidate block ordering and minCost is
the cost of the current best candidate block. The filtering
operation occurs on line 12, thus allowing the SAD function
to be skipped if the condition in (2) is not met.

One of the issues tackled by Coban and Mersereau [4]
is finding the optimal value of λ. This is somewhat re-
solved by the H.264 standard recommendations [8], as the
recommended value of λ can be obtained with the following
equation:

(4)λMOTION =
(
w × 2(QP−12

3 )
)
,

where w varies from 0.65 to 0.85, depending on the type of
frame that is being encoded. This is somewhat a solution to
the problem, but is in no way the optimal value of λ.

Equation (2) can be written as follows:

|B − C(xi,yi)|
6 SAD(x∗

i−1,y
∗
i−1) + λ(R(x∗

i−1,y
∗
i−1)−R(xi,yi)) .

(5)



This form of the equation is interesting because of the
difference between R(x∗

i ,y
∗
i ) and R(xi,yi). Let ∆Ri be the

result of this differentiation for the ith candidate block,

(6)∆Ri = R(x∗
i ,y

∗
i )−R(xi,yi) .

If ∆Ri is positive, then this will increase the filtering thresh-
old in (5) by λ×∆Ri and thus weaken the rate constraint on
the filtering criterion. This will often occur both in raster and
spiral search ordering.

In the next section, we present a new class of search
ordering algorithms that do not weaken the rate-constrained
filtering criterion.

3. RATE-CONSTRAINED SEARCH ORDERING
ALGORITHMS

In light of the fact that the search ordering of candidate blocks
can weaken a rate-constrained filtering criterion, we propose
a new class of candidate block search ordering algorithms,
known as rate-constrained search ordering algorithms. To be
classified as such, the ordering of the candidate blocks must
adhere to the following rule: the motion vector encoding cost
of the current candidate block must be equal to or greater than
the preceding candidate block,

(7)R(xi,yi) > R(xi−1,yi−1) .

This guarantees that ∆Ri 6 0, thus never weakening the rate
constraint on the filtering criterion.

However, this class of search ordering algorithms is
dependent on the encoding scheme used for the motion
vectors of candidate blocks. For the H.264 standard, each
component of a motion vector is coded using exponential
Golomb codes and quarter pixel precision, and thus

(8)R(x, y) = G(4x) +G(4y) ,

where the G function returns the number of bits required to
code a given value with an exponential Golomb code. This
function can be defined as follows:

(9)G(x) = 2× blog2(2|x|+1)c+ 1 .

In Figure 1, we present the motion vector encoding costs
of candidate blocks for a very small part of an H.264 mo-
tion estimation search area centered on the H.264 predicted
motion vector. Analyzing these costs, we notice that for the
same distance from the center (0, 0), candidate blocks located
near the diagonal (xi ≈ yi) are more expensive than those
near the axis (xi 6≈ yi). This helps to explain how the spiral
search can weaken the rate-constrained filtering criterion. If
the current best candidate is close to or on the diagonal, then
the evaluation of candidate blocks closer to the axes will result
in a positive value for ∆Ri, weakening the filtering criterion.

Applying the rule defined by equation (7) to the grid of
Figure 1 can result in multiple search orderings. In this paper,
we propose a search ordering that successively evaluates
different quadrants around the center (0, 0). The grids, b and
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Fig. 1: Grid of motion vector encoding bit lengths for the
candidate blocks of a search area. The center of the search
area (0, 0) is the gray square.
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Fig. 2: Subsets of the raster search ordering (a), the H.264 JM
implementation of spiral search ordering (b) and the proposed
rate-constrained search ordering (c). The center of each
search area (0, 0) is the gray square. Values in these tables
show the evaluation order of candidate blocks (from 0 to 24).

c, in Figure 2 show 5×5 subsets of the 65×65 grids tested in the
next section. We can note that in the proposed grid, Figure 2c,
the axes are evaluated first, since their motion vectors require
fewer bits. Next, the points closest to the center and the axes
are evaluated (similar to an asymptote shape). We chose to
alternate between quadrants, since this is also performed in
the H.264 JM implementation of spiral search (Figure 2b).
Alternating between quadrants can improve filtering, when a
better candidate is found sooner, which will allow more SAD
operations to be skipped.

Implementing a new search candidate ordering in an
encoder like the H.264 joint model [12] is relatively straight-
forward and involves few implementation requirements, as
a grid of values, analogous to the ordering lookup table in
Algorithm 1, is used for spiral scan ordering. Our solution
only requires changing the pointer to this grid. This small
change allows for interesting results, as we will show in the
next section.

4. EXPERIMENTAL RESULTS AND DISCUSSION

To compare the proposed search ordering algorithm to the
spiral search ordering algorithm, we implemented the pro-
posed search ordering into the H.264/AVC JM 18.5 reference
software [12]. We compared the number of SAD operations
required to encode CIF (352 × 288) sequences using the



Table 1: SAD reduction using the proposed search ordering compared to the H.264 JM reference software’s implementation of
spiral search, as a function of block size and QP for several CIF video sequences.

Foreman Football News
# of SAD operations for 300 frames # of SAD operations for 260 frames # of SAD operations for 300 frames

QP Size Spiral Proposed Red. % Spiral Proposed Red. % Spiral Proposed Red. %
28 4 416 262 070 388 993 410 6.55% 1 115 661 675 1 035 142 134 7.22% 134 537 882 128 099 468 4.79%
28 8 785 227 992 765 544 865 2.51% 1 955 919 279 1 882 526 019 3.75% 290 136 328 286 173 266 1.37%
28 16 409 325 310 401 608 855 1.89% 903 904 793 879 156 973 2.74% 309 741 039 308 103 709 0.53%
32 4 225 442 778 204 861 411 9.13% 698 105 494 638 767 242 8.50% 81 710 975 76 734 942 6.09%
32 8 648 570 481 627 984 818 3.17% 1 659 309 376 1 594 498 115 3.91% 255 001 256 249 897 228 2.00%
32 16 422 019 606 414 160 704 1.86% 922 208 528 898 298 829 2.59% 291 083 798 289 592 570 0.51%
36 4 107 804 660 95 285 467 11.61% 393 409 060 353 080 194 10.25% 44 836 321 41 544 099 7.34%
36 8 529 033 021 507 752 081 4.02% 1 185 610 980 1 133 690 522 4.38% 215 288 507 212 294 102 1.39%
36 16 426 912 515 419 050 593 1.84% 923 795 311 900 217 448 2.55% 270 475 527 269 005 875 0.54%
40 4 47 435 348 41 836 990 11.80% 183 815 418 161 532 698 12.12% 24 308 026 22 453 474 7.63%
40 8 405 457 244 383 738 455 5.36% 760 172 034 712 290 223 6.30% 166 808 837 163 627 932 1.91%
40 16 421 173 116 413 071 553 1.92% 876 436 298 856 138 643 2.32% 264 566 993 263 016 343 0.59%

Average SAD reduction 5.14% Average SAD reduction 5.55% Average SAD reduction 2.89%

reference software’s spiral search implementation against the
proposed search ordering algorithm. To simplify results, we
used the baseline profile with the following alterations: 5
reference frames, full pixel precision motion estimation and
only 16×16, 8×8 and 4×4 block partitions. Similar results
are expected with rectangular shaped blocks.

The number of SAD operations required for the “Fore-
man”, “Football” and “News” sequences are listed in detail
in Table 1. Table 2 lists the average reduction percentage
of SAD operations for the “Foreman”, “Flower”, “Football”,
“Mobile”, “News” and “Tempete” sequences. In this table,
the column ∆ Bits (kb/s) is the average bit rate difference,
measured in kilobits per second, between the spiral search or-
dering encoding and the proposed search ordering encoding.
The difference is very small, and is attributable to the search
ordering algorithms finding different best candidates, but with
the same cost values. This phenomenon has a low probability,
but considering the number of candidate blocks evaluated, it
does occur. This leads to an even smaller average difference
in luma PSNR, listed in the ∆ PSNR-Y column. For the ∆
columns, a negative value indicates that the value, resulting
from the encoding of the proposed search ordering, is smaller
than that obtained by the spiral search encoding.

Table 2: Average results for spiral search ordering versus
proposed search ordering, with the same experimental
conditions as Table 1

Sequence # Fr. SAD Red. ∆ Bits (kb/s) ∆ PSNR-Y
Foreman 300 5.14% -0.18 0.0000
Flower 250 1.61% -0.21 -0.0017
Football 260 5.55% 0.09 -0.0025
Mobile 300 0.80% -0.18 0.0008
News 300 2.89% -0.04 0.0017
Tempete 260 1.14% -0.11 0.0008

Average 2.86% -0.10 -0.0001

From the results in Table 1, we can see that the proposed

algorithm is more effective for smaller partition sizes. This is
due to the higher ratio of bits required for the motion vector
of the candidate block versus its SAD value. When this
ratio increases, the weakening effect on the rate-constraint
of the filtering criterion caused by the spiral search is more
significant. A similar situation arises when the QP increases,
which leads to an increase in the value of λMOTION, which is
multiplied by ∆Ri, see equation (5).

Since most recent SEA algorithms use partitions to im-
prove filtering efficiency, for example [5, 6, 9, 10], many
16× 16 and 8× 8 blocks will be evaluated using smaller
partitions. When combined with the proposed method, these
algorithms will lead to an overall increase in the reduction of
SAD operations.

Table 1 and 2 show that the proposed search ordering is,
on average, more efficient with sequences that contain impor-
tant and unpredictable movement (“Foreman”, “Football”),
as compared to more predictable sequences. An increase in
motion vector size leads to an increase in the ratio between
the number of bits required to encode motion vectors and
the SAD values. More nonzero motion vectors will cause an
increase in the probability of weakening the filtering criterion
(choosing a candidate on or near the diagonal).

5. CONCLUSION

A new class of candidate block search ordering algorithms,
named rate-constrained search ordering algorithms, has been
proposed to eliminate the weakening of the filtering criterion
by candidate block search orderings that do not take into
consideration the impact of the rate constraint. For the
H.264/AVC JM reference software, changing the candidate
block ordering requires few implementation considerations,
and can reduce the number of SAD operations required for
motion estimation with negligible impact on bit rate and
visual quality. Further work is required, but similarities
between motion estimation in H.264 and HEVC indicate that
this approach could be adapted to HEVC.
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