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ABSTRACT 

 

Physical exercise may result in muscle tiredness which is 

known as muscle fatigue. This occurs when the muscles 

cannot exert normal force, or when more than normal effort 

is required. Fatigue is a vital sign, for example, for 

therapists to assess their patient’s progress or to change their 

exercises when the level of the fatigue might be dangerous 

for the patients. The current technology for measuring 

tiredness, like Electromyography (EMG), requires installing 

some sensors on the body. In some applications, like remote 

patient monitoring, this however might not be possible. To 

deal with such cases, in this paper we present a contactless 

method based on computer vision techniques to measure 

tiredness by detecting, tracking, and analyzing some facial 

feature points during the exercise. Experimental results on 

several test subjects and comparing them against ground 

truth data show that the proposed system can properly find 

the temporal point of tiredness of the muscles when the test 

subjects are doing physical exercises. 

 

Index Terms— Fatigue, Facial Feature Detection and 

Tracking, Tiredness, Electromyography 

 

1. INTRODUCTION 

 

Fatigue is defined as feeling weakness. It is referred to as 

tiredness and exhaustion. It causes temporary inability in 

maintaining optimal cognitive or muscle performance. 

Fatigue can be mental or physical [1, 2]. In mental fatigue, 

patients cannot concentrate on a problem or cannot perform 

their daily activities as easy as they used to. But in physical 

fatigue, person’s muscle feels weakness. Muscle fatigue 

impairs the normal performance capacity of the muscles as 

it takes more energy than normal case to achieve a desired 

performance. For instance, when you lift a very heavy 

weight or you hold your muscles in one position for a long 

time (called isometric contraction [3]), muscles get tired.  
Physical or muscles fatigue is an important sign, for 

instance, for therapists for taking care of patient’s progress. 

Based on such monitoring of patients, therapists can change 

the exercise, make it is easier or even stop it when the level 

of fatigue goes beyond a level that might be harmful for the 

patient. Nowadays, measuring muscle fatigue is usually 

done by a direct contact between the muscles and a sensor. 

Such sensors can be a force gauge, EMG electrodes, 
Mechanomyogram (MMG) sensors. Measuring the fatigue 

using a force gauge is very easy. But, it requires some 

devices like a hand grip dynamometer [4]. It, hence, is 

impossible to measure the fatigue using this method for an 

exercise using, for example, dumbbells. The EMG method 

uses electrodes to detect electrical current when muscles are 

contracted [5]. EMG can record signals from muscles, 

which can be accomplished using two approaches know as 

invasive (needle electrode-based) and non-invasive (skin 

surface electrode-based). The non-invasive one which is 

also known as surface EMG (sEMG) is popular for 

collecting signals from muscle fatigues [6]. This technique 

has been used very often [7-11], though it is complex to 

implement, particularly in automatic fatigue detection.  

EMG signal is very sensitive to noise which generally 

should be filtered. It also requires wearing adhesive gel 

patches that may cause skin irritation and slight pain. The 

(MMG) is another non-invasive method for assessing of 

muscle fatigue which is often used with EMG technique. 

EMG records electrical signals, but, MMG captures 

mechanical signals generated from muscle contraction. 

Similar to EMG and other fatigue detecting techniques, the 

sensors applied in MMG, such as accelerometer, goniometer 

and microphone [12-14] require direct skin contact. MMG 

cannot be used for dynamic contraction. Moreover, they are 

expensive and physically balkier. Furthermore, MMG, 

similar to EMG, is sensitive to noise [5].  

To overcome the problems of contact-based methods of 

muscle fatigue measurement, in this paper, we develop a 

contactless computer vision technique. The proposed 

method is based on the work of [15-17] which show that 

heartbeat rate can be measured from facial images. The 

point here is that blood circulation to the head makes some 

periodic movements on the face which are not visible to the 

naked eyes, but can be revealed by video magnification [18] 

to measure the heartbeat rate. We have extended the same 

concept to muscle fatigue measurement. We utilize this fact 

that the energy that is released from shaking of muscles (due 

to tiredness) results in shaking of the face which might not 

always be detected by naked eyes, but can be well 



discovered by computer vision techniques similar to those of 

[15, 16]. This actually makes good sense because any 

motion or any contraction during muscles activity happens 

by a group of motor units (including motor neuron and the 

skeletal muscle fibers). When a muscle is fatigued, some of 

the motor units drop out of service and leading to muscle’s 

shaking status which consequently results in shacking of the 

face. To the best of our knowledge, there is not any similar 

previous works on detecting muscle fatigue using computer 

vision techniques.  

The rest of this paper is organized as follows: Section 2 

presents the details of the proposed approach for detecting 

muscle fatigue. Experimental results and performance 

evaluation of the proposed system are discussed in Section 

3. Finally, conclusions are drawn in Section 4.  

 

2. THE PROPOSED SYSTEM 

 

As mentioned earlier, muscles start shaking after they get 

tired due to an activity. This shaking gets reflected on the 

face. This is exactly the purpose of this paper to detect this 

shaking by analyzing facial image and tracking specific 

facial features for measuring the muscles fatigue. The block 

diagram of the proposed system is shown in Figure 1. First a 

camera (a Logitech webcam) is continuously filming the 

subject with a resolution of 640x480 pixels. Then, the 

subject's face is detected by Viola and Jones [19] face 

detector. Then, we extract and track some of the facial 

feature points. Thereafter, we extract muscle fatigue-related 

vibration signal of the head by removing large head motion 

using a moving average from the trajectories of the chosen 

facial features [15]. Afterwards, the extracted vibrating 

signal is segmented and filtered using a pass band filter to 

calculate the released energy from the vibrating signal. 

Before filtering, to enhance the coherency between the 

blocks (segmented sequences) and decreasing windowing 

effects, 75% overlapping with Hamming window is utilized. 

Then, we calculate the power spectral density to obtain the 

energy that is released due to shaking of the face to finally 

index the fatigue. These are explained in the following 

subsections.  

 

2.1. Trajectory generation  

 

From the detected faces by Viola and Jones face detector 

[19] we extract the facial regions of interest using the 

method of [15]. These regions contain stable facial feature 

points which are those points that are not sensitive to 

changes in facial expressions. These facial features points 

are chosen and then tracked over time by [20] to generate 

facial feature trajectories. Then, we only keep those 

trajectories which their displacements in any two 

consecutive frames are not larger than a predefined 

threshold.   

 
Figure 1: The block diagram of the proposed system 

 

2.2 Muscle fatigue-related vibrating signal extraction 

 

The chosen trajectories in the previous step are used to 

extract muscle fatigue-related vibrating signal. The 

trajectories are usually noisy due to, for example, error in 

feature tracking and any unwanted muscle motion like facial 

expression. To reduce the effect of such noises we use a 

mean filter. To do so, we use: 
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where      is the shifted mean filtered trajectory,       is 

the nth frame of the trajectory m, M is the number of the 

trajectories, N is the number of the frames in each trajectory 

and   ̅  is the mean value of the trajectory m, which is given 

by: 
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Then, the vibrating signal       which carries the shaking 

information of is obtained by: 
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where R is the number of points involved in the averaging 

(here we use the experimentally obtained value of 35). 

 

2.3 Energy measurement and fatigue detection 

 

To measure the released energy of the muscles we need to 

segment the trajectories (with length tsec to small time blocks 

with ∆tsec length). Segmenting the trajectories help us to 

measure the fatigue in the steps of time.  After windowing, 

each block is filtered by a pass band ideal filter with cut off 

frequency interval of [3-5] Hz. Figure 2 shows the power of 
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the filtered vibrating signal with cut off frequency interval 

of [3-5] Hz. We observe that the power of the signal rises up 

when the fatigue happens (interval of [127–185]). 

 

 
Figure 2: Power of the trajectory during fatigue test: The Blue 

regions are the resting time and the red region shows the fatigue 

due to exercise. 

 

After filtering, the energy of ith block, Ei, is calculated as: 
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in which,    is the calculated energy of the ith block, Yij is 

the Fast Fourier Transform (FFT) of the trajectories and M 

the is length of Y. Finally, fatigue occurrence is found by: 
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in which, Fi   is the fatigue index,     is the calculated 

energy of the ith block, N is the number of the initial blocks 

in the normal case (before starting the fatigue), K is the 

amplitude factor, and γ is a slope factor. 

It can be seen that in Eq. (5) a bipolar sigmoid (tangent 

hyperbolic) has been applied to Ei (the calculated energy). 

This actually suppresses the fake peaks that appear in the 

results because of the facial expression and the volunteer 

motions. Figure 3 illustrates the effect of the sigmoid 

function on the output results. Experimentally, we got 

reasonable results with k = 10 and γ = 0.01. 

 

 
(a)                                        (b) 

Figure 3: Comparing the output without using sigmoid (a) and with 

using sigmoid (b). The blue regions are the resting time and the red 

region is the fatigue due to exercise. 

 

3. EXPERIMENTAL RESULTS 

 

The proposed system has been implemented in Matlab 

R2013a. The test subjects participating in evaluation of the 

system were filmed by two webcams:  one was filming the 

frontal views of the face and the other one filming the full 

body of the test subjects, for manual verification of the 

synchronized shaking of arms and faces of the test subjects 

during the experiments.  

There were 20 persons involved in the testing, 14 in one 

testing scenario and six in another testing scenario. The two 

testing scenarios evaluated the system in two different 

fatigue detection exercises known as maximal muscle 

activity and submaximal muscles activity [21]. These tests 

which are explained in the following scenarios are usually 

used in detecting muscle fatigue [4].  

 

3.1 Testing scenario 1 (maximal muscle activity) 

 

In this scenario we have considered the proposed 

algorithm’s accuracy in maximal muscle activity. For 

validating our results, we utilized a hand grip dynamometer 

to produce ground truth data by analyzing the recorded data. 

We asked the test subjects to squeeze the device as much as 

they can while they were looking at the webcam which was 

filming their faces.  Next, the data obtained by the proposed 

system was compared against the one recorded by the 

dynamometer. Table 1 compares the duration of the fatigue 

detected by the proposed system and the dynamometer.  

      Figure 4(a) graphically depicts the amount of the energy 

which is released in each time block during for one of the 

test subjects. Vertical axis of this figure shows the released 

energy in the frequency domain. According to the figure, the 

regions with blue color correspond to the durations that 

subjects are resting or doing exercise without fatigue. 

During the fatigue, depending on the level of subject’s 

fatigue, the color is respectively changing to light blue, 

yellow, orange, and finally red. This figure actually shows 

the distribution of the Energy Spectral Density (ESD) in the 

frequency domain in the interval of [3-5] Hz, where the 

colors on the map depict the locations of strong variation 

components of      .  

      Using this information, not only we can approximate the 

fatigue, but we can see which components carry most of the 

shaking energy due to the fatigue. However, for detecting 

the fatigue it is better to use a line graph like the one shown 

in Figure 4(b) wherein the boundaries between the fatigue 

and the rest areas are clearly visible. Fatigue in this figure 

happens when the fatigue index sharply goes beyond the 

threshold. It seems that the ideal value of the threshold is 

zero, but based on our experience it should be a bit larger 

than zero to remove fake peaks due to unwanted motions. 

However, selecting larger thresholds decrease the accuracy 

of the fatigue duration. Figure 4(c) shows the recorded data 

using the dynamometer. The part of the graph with a falling 

force indicates the fatigue region. It can be seen from these 

figures and also from Table 1 that there is a good agreement 

between the results of the proposed system and the ground 

truth. 
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Table 1: Comparing the fatigue durations obtained by the proposed 

system against those obtained by the dynamometer in Testing 

Scenario 1. 

Subjects 
Ground truth by the 

dynamometer (sec.) 

Fatigue duration by 

the proposed system (Sec.) 

      Subject 1 103.7 - 170.0     100.1 - 130.8 

      Subject 2 106.2 - 164.3     106.4 - 167.2 

      Subject 3 116.1 - 199.2     115.5 - 188.6 

      Subject 4 100.2 - 159.2     102.6 - 163.5 

      Subject 5 100.9 - 196.2     100.0 - 188.5 

      Subject 6 100.2 - 169.0     100.1 - 157.9 

      Subject 7 102.3 - 151.6     103.9 - 130.8 

      Subject 8 102.1 - 206.1     103.9 - 215.5 

      Subject 9 101.8 - 211.0     103.9 - 211.6 

      Subject 10 101.5 - 207.0     100.2 - 215.7 

      Subject 11 107.8 - 224.6.     107.7 - 223.2 

      Subject 12 101.6 - 184.2     98.84 - 178.7 

      Subject 13 102.0 - 180.0     103.9 - 180.9 

      Subject 14 97.81 - 189.0     98.76 - 189.9 

 

 
(a) (b) 

 

 
(c) 

Figure 4: Testing scenario 1: a) Fatigue time spectral map, b) the 

same information by a line graph, and c) the ground truth data 

measured obtained by the dynamometer for one of the test subjects. 

The blue region is the resting time and the red region shows the 

fatigue due to exercise. 

 

3.2 Testing scenario 2 (submaximal muscles activity) 

 

The purpose of this test is to examine the proposed approach 

for another type of isometric exercise, the submaximal 

muscles activity. In this type of activity, the muscles in 

contrary to using the dynamometer are not required to exert 

the maximum force, but they get tired by continuing an 

exercise. We implemented this scenario by holding a 

dumbbell. 

Six test subjects participating in this testing scenario 

were asked to look at the webcam for a while without any 

motion or expression. They were then asked to left a 5KG 

dumbbell slowly without any fast motion or reaction on 

their face, and hold the dumbbell as long as possible such 

that they feel a continuous pain on their shoulders (fatigue),  

then they rest for around one or two minutes (depending on 

their tiredness). Finally, they were asked to repeat the lifting 

weight again, similar to the first time. Table 2 shows the 

fatigue duration for each participant. Figures 5(a) and 5(b) 

show the output of the proposed system by the time spectral 

map and the line graph for one of the test subjects. 

Similar to Figure 4(b) it can be seen in Figure 5(b) that 

there is a clear difference between the resting and the fatigue 

regions. However, it can be seen that when the exercise 

starts in the testing scenario 1, the fatigue index increases 

sharply, while it rises smoothly in the testing scenario 2. The 

difference is due to the different types of exercises in the 

two scenarios. In the testing scenario 1, we used maximal 

muscle activity while in the testing scenario 2 we used 

submaximal activity, which does not require maximum 

power to lift the dumbbell at the beginning.  

 
Table 2: Fatigue duration for lifting the dumbbell at the first and 

the second attempts. 

Subjects 

First Attempt Second Attempt 

Lift up 

(Sec.) 

Lift 

down 

(Sec.) 

Fatigue 

Duration(Sec.) 

Lift up 

(Sec.) 

Lift 

Down 

(Sec.) 

Fatigue 

Duration(Sec.) 

Subject 1 120 220 200.4 - 223.5 300 480 339.1 - 493.1 

Subject 2 130 310 167.5 - 293.1 430 550 418.8 - 544.4 

Subject 3 125 380 146.9 - 384.2 496 742 508.5 - 757.1 

Subject 4 123 379 172.4 - 381.2 476 618 535.4 - 599.0 

Subject 5 125 280 230.1 - 283.8 392 502 452.5 - 506.2 

Subject 6 128 420 226.5 - 431.4 520 720 539.2 - 733.4 

 

 
(a)                                           (b) 

Figure 5: Testing scenario 2: a) Fatigue time spectral map, b) the 

same information by a line graph for test subject 5. Blue, yellow 

and red regions indicate resting time, exercise without fatigue and 

exercise with fatigue, respectively. 

 

4. CONCLUSION 

 

Muscle fatigue is nowadays measured by some sensors that 

need to be in direct contact with muscles. The proposed 

system in this paper consists in a novel contactless muscle 

fatigue measurement algorithm by detecting and tracking 

facial features. The proposed system has been tested on 20 

test subjects in two different testing scenarios. Comparing 

the results of the proposed system against the results 

obtained by contact-based sensors shows that our system 

finds the fatigue indexes (thresholds between resting and 

fatigue areas) properly. 
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