
MAXIMUM LIKELIHOOD EXTENSION FOR NON-CIRCULANT DECONVOLUTION

Javier Portilla

Instituto de Óptica
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ABSTRACT

Directly applying circular de-convolution to real-world blurred
images usually results in boundary artifacts. Classic boundary
extension techniques fail to provide likely results, in terms of
a circular boundary-condition observation model. Boundary
reflection gives raise to non-smooth features, especially when
oblique oriented features encounter the image boundaries.
Tapering the boundaries of the image support, or similar
strategies (like constrained diffusion), provides smoothness
on the toroidal support; however this does not guarantee con-
sistency with the spectral properties of the blur (in particular,
to its zeros). Here we propose a simple, yet effective, model-
derived method for extending real-world blurred images,
so that they become likely in terms of a Gaussian circular
boundary-condition observation model. We achieve artifact-
free results, even under highly unfavorable conditions, when
other methods fail.

Index Terms— non-circulant deconvolution, boundary
artifacts, image restoration, maximum likelihood extension

1. INTRODUCTION

Filters used in image restoration are typically expressed as
a quotient in the discrete Fourier domain, and they are usu-
ally applied in that domain. This applies both to linear and
non-linear (possibly state-of-the-art) techniques, as these also
typically apply iterative linear filtering, combined with some
non-linear operations. By filtering through the DFT (Discrete
Fourier Transform) we establish circular boundary-conditions
to the observation model. In real-world degraded images this
unnatural constraint, of course, does not hold. Mismatching
of circular and real boundary condition typically plagues the
restoration result with boundary artifacts.

In recent years, a growing interest has emerged in the
boundary condition problem in image restoration. Reeves [1]
considered the specific case of deconvolution being done
using a regularized inverse linear operator with its classical
structure (as the ones used in Richardson-Lucy, Tikhonov,
Wiener filtering, etc.) to separate the (non-circulant) linear
deconvolution problem as a sequence of two steps: first, to
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compute a set of boundary pixels extending the observa-
tion, fulfilling some constraints (a non-translation-invariant
problem, but with relatively few unknowns); and, second, to
perform the filtering of the extended image, assuming circular
boundary conditions. Recently Sorel [2] adapted that method
to an efficient non-linear restoration technique [3]. For iter-
ative non-linear restoration methods the modification of the
original circulant deconvolution matrices also needs to be
done iteratively over partial results. Other authors (e.g., [4])
have followed this same path of modifying previous restora-
tion algorithms assuming circulant convolutions to deal with
the boundary condition problem in effective, but ad-hoc (i.e.,
specific to the restoration method) ways. Here we follow the
alternative approach of obtaining a single appropriated exten-
sion of the observed image, independently of the restoration
algorithms (assumed DFT-based) to be applied.

Liu and Jia [5] investigated the extension, through mir-
ror reflection, of the image to another, four times bigger in
surface, providing continuity on a toroidal support (a tiling
image, in computer graphics terminology). Then they solved
for a variational problem in order to further smooth bound-
ary transitions. Note that classical partial mirror extension
does not preserve continuity on a toroidal support. In gen-
eral, whenever reflection is considered, strength of artifacts
will critically depend on (1) the existence of oblique fea-
tures near the image boundaries (as they generate new spatial
frequencies after being reflected); and (2) the lack of verti-
cal/horizontal symmetry of the blurring kernel, which pro-
vokes that the mirrored extensions can no longer be described
as filtered by the same kernel.

Another simple universal strategy to avoid boundary arti-
facts consists of using a spatially variant circulant smoothing
operator acting only on the vicinity of the image support’s
boundaries, thus imposing smoothness on a toroidal support.
This is implemented by the popular rMatlab function ed-
getaper.m. However, methods like this or the referred [5] dis-
regard the fact that smoothness on the toroidal support, on
its own, does not fully comply with the circulant observation
model. It is also necessary that the extended image respects
the spectral valleys of the blurring kernel. This latter obser-
vation is a central motivation of this work.
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2. METHODS

2.1. Realistic vs. circulant observation models

A useful observation model for noisy convolved images is

y = Hx+w, (1)

where the H matrix represents an M2 ×N2 (with M < N ),
non-circulant convolution, and w is the added noise term.
Whereas using a non-circulant matrix is the correct choice
for real-world image convolution, most restoration algorithm
assume, for convenience, a circular boundary condition ob-
servation model:

z = Hcx
′ +w′, (2)

where Hc is a square (N ′)2 × (N ′)2 block-circulant convo-
lution matrix. We force the mean and autocovariance of the
extended images to be identical to those of the original im-
age (the latter computed/estimated with non-circular bound-
ary conditions). A way of making compatible Eqs. (1) and (2)
is to force Sz = y, where S is a M2 × (N ′)2 matrix, with
N ′ ≥ N , selecting the observed M2 pixels of y from its ex-
tended version. Hc is a square circulant extension of H. The
restoration problem of non-circulant deconvolution has been
thus split into three sequential steps: (1) find a suitable exten-
sion ẑ(y) of y; (2) perform a circulant deconvolution of ẑ(y);
(3) discard the added pixels.

2.2. Problem assessment

There are (N ′)2 −M2 degrees of freedom for extending y
to z. Here we follow the criterion of choosing the exten-
sion which maximizes the likelihood of an adapted, Gaussian
circular boundary-condition observation model. We have as-
sumed that both the added noise w (considered white) and
the original image x vector terms follow an homogenous
(translation-invariant) distribution. Then the Discrete Fourier
Transform diagonalizes the circulant covariance matrices of
their extensions. In their diagonals appear the corresponding
Power Spectral Densities (PSDs):

PY (fi) = E|Z(fi)|2

= |H(fi)|2E|X ′(fi)|2 + E|W ′(fi)|2

= |H(fi)|2PX(fi) + σ2
W , (3)

for each of the (N ′)2 discrete frequencies fi, where X ′(f)
represents here the Fourier transform of x′ (analogous with z
and w′). Considering, for simplicity, Gaussian distributions
for all the implied vectors, the observation’s minus log likeli-
hood is (ignoring constant terms) ∝

∑N ′

i=1 |Z(fi)|2/PY (fi),
and our maximum likelihood (ML) extension problem is:

ẑ(y) = argmin
z
||D−1/2PY

F∗z||2, s.t. Sz = y, (4)

where F∗ is a matrix performing a 2D-DFT, and DPY
is a

diagonal matrix whose entries correspond to PY (u, v), both
lexico-graphically ordered.

2.3. Estimating PY

There are two alternative paths for estimating PY . First one is
to compute it as the DFT of the sample auto-covariance of the
observation y. This possibility is appealing, as it allows to at-
tack Eq.(4) without knowing the blurring kernel h or the noise
variance σ2

w. However, estimating sample statistics poses a
trade-off between variance and bias (noisy vs. blurred esti-
mation) whose optimal balance point may be difficult to know
in advance. Second alternative consists of estimating/setting
PX first, and then applying Eq.(3). The advantage of the lat-
ter approach is that, even if our PX estimate is rough (e.g., a
generic signal model), degradation will nevertheless be reli-
ably accounted for (provided we know h and σ2

w with some
accuracy). In particular, it will suffice to identify the set of fre-
quencies of the extended observation which are more heavily
penalized by the cost function (low PY (fi)). Here we have
followed this second strategy.

We have chosen a Gaussian Markov Random Field model
for the original image x, a separable AR-1 (auto-regressive,
one tap) model, whose PSD is:

PX(u, v) =
4σ2

x log(ρ)
2

(log(ρ)2 + 4π2u2)(log(ρ)2 + 4π2v2)
. (5)

We have hand-optimized its parameters, obtaining σx = 30
and ρ = 0.65, for the images and experiments described in
Section 3. We note that the behavior of the method was robust
over change in these parameters, over a wide range.

2.4. Unconstrained reformulation

First, we split zP = Pz = [zTe z
T
i ]

T into two non-overlapping
vectors: zi, corresponding to theM2 original observed pixels,
and ze, corresponding to the (N ′)2 −M2 extended pixels. P
is a permutation matrix. Analogously, the Fourier transform
can be re-ordered such that FP

∗ = F∗P−1 = [F∗e F
∗
i ], corre-

sponding to the two component of the Fourier transform ap-
plied only to the external and the internal pixels, respectively.
F∗z = FP

∗zP = F∗eze + F∗i zi, and the extension constraint
implies zi = y. Now Eq.(4) simplifies to

ẑ(y) = argmin
ze

||D−1/2PY
(Fe
∗ze + Fi

∗y)||2, (6)

whose solution is:

ẑ(y) = −(FeD
−1
PY

F∗e)
−1FeD

−1
PY

F∗iy. (7)

In terms of practical implementation, it is useful to re-express
F∗e = F∗ET , and F∗i = F∗ST, where ET ((N ′)2× ((N ′)2−
M2))) is the extension of external pixels to a vector contain-
ing the whole image, the center being filled with zeros, ST

(((N ′)2×M2) performs analogously, but preserving the cen-
tral region. Their transpose do the reverse (selection) opera-
tions. Thus, the difficulty in Eq. (7) lies only in the involved
matrix inversion.
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2.5. Recursive computation

Let us call A = FeD
−1
PY

F∗e and b(y) = FeD
−1
PY

F∗iy. First
note that A always exists when σ2

w > 0. In this case existence
of A implies A−1 also exists. Thus, we can use Neumann’s
series [6] A−1 =

∑∞
n=0 (I−A)n to construct the following

recursive method for computing ẑ(y) = A−1b(y):

z(n+1) = z(n) + λ(b(y)−Az(n)),

with, in principle, λ = 1. However, we accelerate conver-
gence by using λ = 2/||A)|| (||A)|| is the largest eigenvalue
of A in absolute value), without affecting the fixed-point so-
lution. We have used a close approximation: λ = 2σ2

w. As a
starting point we use a mirror-extended image, edge-tapered
with a Gaussian kernel (see details in next section). The ob-
servation’s sample mean was subtracted, and added back after
the extension.

3. EXPERIMENTS AND RESULTS

We have tested our method with three 8-bit gray-level 2562

pixel images: two typical images (Cameraman and House),
and an image from Brodatz photo texture album, (Straw),
having a lot of energy along diagonal and oblique orienta-
tions. We have used 8 degradations, with 4 blurring ker-
nels, each adding two levels (low and medium) of noise.
We have used the following point spread functions (PSFs),
all of them with normalized sum: PSF1 is hi,j = (1 +
i2 + j2)−1, for i, j = −7...7. PSF2 is a 9 × 9 uniform
kernel. PSF3 simulates a uniform camera vertical move-
ment 9 × 1. PSF4 is the oblique blurring kernel given by
[0000111; 0012321; 0134310; 1232100; 1110000].

We obtained y by cropping the M ×M valid central re-
gion after performing circular convolution and noise addi-
tion to the original. Note that M = N − 2L, being 2L +
1 the width/height of the kernel support. We have applied
our extension to two very different restoration methods us-
ing circular boundary conditions: the classic Wiener filter
(by using the same spectral model of Eqs. (5) and (3)), and
the L2-relaxed L0 method ConDy, optimized for 10 itera-
tions [7]. We have compared our results, measured as incre-
ment in signal-to-noise ratio (ISNR, in decibels), to the results
of: (1) Mirror extension, using Le = 8 (N ′ = N + 2Le =
M + 2L + 2Le), being Le an extra extension of the origi-
nal support (which we have tested it helps to reduce the ar-
tifacts); (2) Full mirror extension, without cropping the mir-
rored copies ((N ′ = 2M ); (3) Same boundary reflection as
(1), but now followed by edge tapering using rMatlab ed-
getaper.m, with a Gaussian kernel of σ = 6 (hand-optimized
value); (4) Boundary artifact-free oracle: obtained by restor-
ing the whole N × N circulant convolved image, and then
cropping the M ×M central region.

To understand the influence of the degradation on the re-
sults we have plotted the average mean square improvement

ratio (expressed as ISNR) in Figure 1, for every simulated
degradation. The oracle result is depicted as a white box indi-
cating a practical upper bound performance. First, we observe
that mirror extension-based methods are not robust. Lim-
ited reflection (labeled as MIRROR) only performs accept-
ably with PSF1, which is the only amongst the 4 used kernels
that has no zeros in Fourier. Full reflection extension (labeled
MIRROR-T, ”T” for tiling) is far more robust, but also fails
for PSF4. Lacking this kernel vertical/horizontal symmetry,
the reflected observation is highly unlikely in terms of the ob-
servation model. In contrast, edgetaper rarely provokes very
strong artifacts. However, its results are highly dependent on
the kernel and observed image, and do not get close, on aver-
age, to the oracle performance, especially when the PSF has
zeros in Fourier and the noise level is low. In such cases, the
only method amongst the compared ones which behaves close
to the reference oracle is our maximum likelihood extension.

Table 1 shows, for reference purposes, the complete re-
sults of our MLE method, as compared to the boundary
artifact-free oracle and the edgetaper rMatlab function.
There we can see, among other things, how the oblique spa-
tial frequencies, dominant in Straw, affect very negatively to
the edgetaper method, as implemented here (using mirror ex-
tension prior to the edgetapering). The advantage of MLE is
especially prominent for the degradation experiments having
low noise and PSFs having zeros in Fourier, and for those non
HV-symmetric (degradation 3, 5, 7 and 8). Figure 3 shows a
visual comparison of the edgetaper extended result vs. MLE
for Straw, using Wiener restoration.

Finally, Figure 2 shows how the quality gap between the
edgetaper technique and the artifact-free oracle performance
is effectively saved by the MLE method. We see how 10 to
50 iterations of the algorithm suffice to obtain good results in
practice. ML extension using 25 iterations in our implementa-
tion (rMatlab over double quad rIntel rXeon architecture)
takes around 0.5s for images this size.

4. CONCLUSION

Boundary artifacts in image restoration are due to the mis-
match between non-circulant convolved real-life observa-
tions and the circulant observation model usually assumed by
restoration methods. To overcome this mismatch, we extend
the observation to make it consistent with a Gaussian circu-
lant observation model, while keeping its auto-covariance.
By maximizing likelihood on this model, we have obtained,
in all studied cases, restoration results very close to those,
artifact-free, obtained using circulant convolutions for sim-
ulating the observation. We have tested the method against
a variety of PSFs, noise levels, original images, and even
against two different restoration algorithms.
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Fig. 1. Average performance, for the compared extension
methods, and the 8 degradation (blur + noise) experiments.

Restor → Wiener ConDy10
Method → E-T MLE Ora E-T MLE Ora
PSF σ2

w HOUSE
1 .25 7.41 7.63 7.82 8.55 8.86 9.15
1 2 5.01 5.12 5.16 7.51 7.80 7.90
2 .31 4.95 6.56 6.69 9.14 10.25 10.34
2 4 4.09 4.11 4.07 7.08 7.29 7.42
3 1 5.18 6.20 6.27 7.68 9.14 9.27
3 4 4.10 4.35 4.34 6.38 7.24 7.40
4 .25 2.73 3.10 3.01 4.93 5.59 5.61
4 4 1.97 2.11 2.09 4.13 4.55 4.56

PSF σ2
w CAMERAMAN

1 .25 8.67 8.70 8.71 10.56 10.58 10.62
1 2 5.56 5.55 5.56 8.06 8.11 8.12
2 .31 5.73 5.95 6.24 8.80 9.12 9.25
2 4 3.89 3.87 3.90 5.40 5.48 5.50
3 1 5.76 6.40 6.60 8.51 9.66 9.99
3 4 4.29 4.42 4.49 6.87 7.32 7.43
4 .25 3.77 3.90 3.90 6.58 6.85 6.91
4 4 2.32 2.35 2.36 3.66 3.76 3.78

PSF σ2
w STRAW

1 .25 8.97 9.26 9.39 7.63 7.72 7.82
1 2 5.85 5.97 6.01 5.33 5.41 5.46
2 .31 3.06 4.56 4.84 3.37 4.29 4.49
2 4 2.31 2.53 2.60 1.92 2.08 2.13
3 1 5.73 7.93 8.46 5.90 8.03 8.56
3 4 5.00 5.82 6.03 4.67 5.53 5.73
4 .25 2.37 4.91 4.96 -0.67 3.17 3.19
4 4 2.62 3.15 3.19 1.79 2.19 2.20

Table 1. Performance comparison, measured in Increment of
Signal-to Noise Ratio, in decibels. ”E-T” refers to ”edgeta-
per”, ”Ora” to the oracle or upper bound reference used, and
”MLE” to our ML extension method.
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Fig. 2. Average performance, for ConDy10 restoration, as a
function of the number of iterations.

Fig. 3. Upper left corner of Straw. From left to right: blurred
(degradation 7), E-T + Wiener, MLE + Wiener.
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