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UNSUPERVISED AND SUPERVISED APPROACHES TO COLOR SPACE
TRANSFORMATION FOR IMAGE CODING

Massimo Minervini, Cristian Rusu, Sotirios A. Tsaftaris

IMT Institute for Advanced Studies
Piazza San Ponziano 6, Lucca, Italy

ABSTRACT
The linear transformation of input (typically RGB) data into a
color space is important in image compression. Most schemes
adopt fixed transforms to decorrelate the color channels. En-
ergy compaction transforms such as the Karhunen-Loève
(KLT) do entail a complexity increase. Here, we propose a
new data-dependent transform (aKLT), that achieves com-
pression performance comparable to the KLT, at a fraction
of the computational complexity. More important, we also
consider an application-aware setting, in which a classifier
analyzes reconstructed images at the receiver’s end. In this
context, KLT-based approaches may not be optimal and trans-
forms that maximize post-compression classifier performance
are more suited. Relaxing energy compactness constraints,
we propose for the first time a transform which can be found
offline optimizing the Fisher discrimination criterion in a
supervised fashion. In lieu of channel decorrelation, we ob-
tain spatial decorrelation using the same color transform as a
rudimentary classifier to detect objects of interest in the input
image without adding any computational cost. We achieve
higher savings encoding these regions at a higher quality,
when combined with region-of-interest capable encoders,
such as JPEG 2000.

Index Terms— Image compression, color space transfor-
mation, statistical learning, JPEG 2000.

1. INTRODUCTION

The red-green-blue (RGB) representation is not efficient for
coding, due to high correlation between color bands of natural
images [1]. To reduce spectral redundancy, image and video
compression algorithms operate on luminance/chrominance
representations of the color information, achieved through
linear transformations of the RGB color space. Each color
band is coded independently, therein deploying a variety of
techniques to address spatial and, for video, also temporal
correlation. A family of such color models is the YCbCr [2],
adopted by many coding standards. However, due to high
variability in source image characteristics, a fixed transform
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may easily result in suboptimal performance, thus motivating
the adoption in some contexts of a data-dependent one.

The energy-compaction and decorrelation properties of
the Karhunen-Loève transform (KLT) make it desirable for
color image compression [1, 3–6]. It was shown to be su-
perior to other approaches in a variety of contexts, both for
color [7–9] and hyperspectral [10] imagery, and has formed
the basis for new fixed transforms [11–13]. However, the
computational complexity of calculating the color covariance
matrix, limits its applicability in sensing environments with
low computational power. A variety of approaches have been
proposed to circumvent this bottleneck, either relying on co-
variance matrix approximations [14], sub-sampling strategies
[15, 16], or learning approaches estimating projection direc-
tions [16]. In this paper, we propose a new data-dependent
color transform, termed aKLT, rooted in the orthogonal Pro-
crustes problem, that preserves energy compaction and per-
forms similar to KLT, but is less computationally complex.

Although KLT and aKLT are designed to match the sta-
tistical properties of the image data, they are agnostic to the
semantics of the scene (e.g., distinction between foreground
and background regions). In present days, image data are of-
ten analyzed by computer vision algorithms (e.g., surveillance
applications) and their transmission over band-limited chan-
nels necessitates their compression. It was shown recently
that considering the application and designing data codecs ap-
propriately, that do not maximize fidelity type criteria (such
as the mean squared error), but consider how would an analy-
sis algorithm (e.g., a classifier) perform on compressed data,
is beneficial from a bit rate perspective [17]. This notion was
explored in [17] and [18] with respect to quantization, how-
ever, as of now the design of color transforms optimized par-
ticularly for classification accuracy has not been considered
yet. Thus, given some previously labeled data, we propose
a methodology to obtain application-dependent color trans-
forms, that while aiming to retain energy compaction proper-
ties, also try to maximize separability of the transformed data.

The rest of this paper is organized as follows. Section 2
details our methodology to learn color transforms from the
data. Section 3 demonstrates the proposed approaches, using
the JPEG 2000 standard to compress test images. Finally,
Section 4 offers concluding remarks.



2. METHODOLOGY

We represent an RGB image as a 3×nmatrix X =
(
r, g, b

)T
,

where r, g, and b are the linearized color components, and
n is the number of pixels. Prior to lossy coding, X is pro-
jected into a new color space by T ∈ R3×3. Each pixel value
xi =

(
ri, gi, bi

)T
in X is transformed with the linear relation

yi = Txi. Upon reconstruction, the color transform is in-
verted, obtaining the approximation x̃i in the RGB domain.
To ensure output dynamic range of yi be the same as xi (e.g.,
0 to 255, for 8-bit unsigned integer representation), we scale
the directions (rows) of T with respect to the `1 norm [12].

In the following, we address the problem of obtaining
data- and application-dependent color transforms. In Sec-
tion 2.1, based on a heuristic, we derive a new low-complexity
transform (aKLT), that adapts to the content using only statis-
tical information from the image. In Section 2.2, we propose
a novel approach, that finds color space transformations using
supervised learning methods on labeled training data.

2.1. The aKLT: A low-complexity unsupervised data-
dependent transform

The KLT produces an orthogonal transformation, K, obtained
from the eigendecomposition of the color covariance matrix
Σ =

∑n
i=1(xi −µ)(xi −µ)T, where µ = 1

n

∑n
i=1 xi is the

mean color vector. The eigenvectors of Σ, sorted in decreas-
ing order of magnitude of the corresponding eigenvalues, de-
fine the directions of K. The KLT achieves complete statisti-
cal decorrelation of the color signals and energy compaction
in the first channel, thus favoring efficient representation and
sub-sampling of the other two channels.

However, estimation of Σ can be demanding in memory
and computation power, particularly for large images, and
its application in resource-constrained sensing devices can be
problematic. Thus, we seek to find a transform that is close to
the KLT but less computationally complex to obtain.

Let X ∈ R3×n be the matrix obtained by normalizing
each column (pixel) of X with respect to the `2 norm. We
seek an orthogonal transform Ω ∈ R3×3 that maps X into a
given reference matrix W ∈ R3×n, and formulate it as:

minimize
Ω

‖W −ΩX‖F subject to ΩTΩ = I, (1)

where ‖ · ‖F denotes the Frobenius norm, and I is the identity
matrix. Let Z = WX

T
, and Z = USVT be the singular

value decomposition (SVD) of Z. The optimization problem
of Eq. (1), known as orthogonal Procrustes problem, admits
closed-form solution UVT [19]. In order to concentrate en-
ergy in the first direction, we impose structure to W.

W =

1 . . . 1
0 . . . 0
0 . . . 0

, Z =

∑n
i=1 ri

∑n
i=1 gi

∑n
i=1 bi

0 0 0
0 0 0

.
Notably, this leads to a simplified form of Z with only a single
direction, a1 = zT1 /‖z1‖2, that corresponds to the principal

Table 1: Comparison of KLT approaches as a function of in-
put size n, where n denotes number of image pixels.

KLT, ACKLT [14] Penna et al. [15] IPCA [16] aKLT

18n ρ18n 15n 11n

direction, thus making the SVD computation unnecessary.
The vector a1 approximates the principal direction of the

KLT. In order to obtain the full transform, we proceed by con-
structing the 3×3 matrix A =

(
a1,a2,a3

)
, where a2 and a3

are initialized with random elements (the effect of random-
ness on performance is explored in Section 3). Subsequently,
we use QR factorization to decompose A into the product
A = QR, where Q ∈ R3×3 has orthogonal columns and
R ∈ R3×3 is upper triangular. The aKLT transformation ma-
trix, K̃ = QT, shares relevant properties with regular KLT:
(a) orthogonality, and (b) energy compaction capabilities. Al-
though there is no guarantee on sorting and relative amount
of energy of second and third channels, this is not of concern
from a compression standpoint (e.g., chroma sub-sampling
strategies usually treat such components equivalently).

Computation of the KLT is dominated by mean subtrac-
tion and calculation of covariance matrix Σ, requiring 18n
floating point operations, where n is the number of pixels. We
ignore cost of subsequent eigenvalue decomposition of Σ to
obtain K, as it does not scale with n. Therefore, approaches
that speed up this step (e.g., power method, or ACKLT [14])
provide negligible benefit. As shown in Table 1, our proposed
aKLT requires only 11n operations, approximately 40% re-
duction in complexity compared to the KLT. The IPCA [16],
based on neural networks, achieves an approximation of the
principal direction in 15n operations, while [15] necessitates
to keep a fraction ρ = 0.6 of the data to match the aKLT.

2.2. A supervised approach to an application-dependent
color transform using labeled pixels

It is known that projecting to principal components is not al-
ways optimal from a pattern recognition perspective: clusters
of points belonging to semantically different objects in the
scene may overlap now in the projected color space. Introduc-
ing distortions due to lossy compression may affect this sepa-
rability further. In this section, we seek to identify a transform
that maintains class separation and decorrelation properties.

We assume that this optimization will occur in an offline
fashion and we will use a training set (pixels segmented in two
classes), thus it is supervised. Compression of newly acquired
images at the sensor occurs as before, with the transform now
known. The calculation of a new transform is necessary only
if the scene conditions change (depending on the process be-
ing observed) and if new training data are available.

Let C1 and C2 be disjoint sets of pixel values (C1 ∩C2 =
∅) representative of distinct pattern classes. We seek an or-
thogonal transform D ∈ R3×3 that projects data points be-
longing to distinct classes, x1 ∈ C1 andx2 ∈ C2, in a domain



where they are maximally separated according to measure C:

maximize
D

C{Dx1,Dx2} (2a)

subject to DTD = I, (2b)

‖DΣDT −Λ‖F ≤ ε, (2c)
where Σ is the color covariance matrix, Λ is a diagonal ma-
trix whose elements are the eigenvalues of Σ, and ε ≥ 0. The
last constraint aims to optimize for energy compaction and
decorrelation, however, solving this problem is difficult with
constraints that could in case appear conflicting. In the re-
mainder, we ignore Eq. (2c) focusing on class separation, but
we revisit the complete problem in the next section.

An effective measure of class separability is the Fisher
criterion, defined as J(d) = (dTSbd)/(d

TSwd), where d ∈
R3, Sb =

∑2
i=1(mi − µ)(mi − µ)T is the between-class

scatter matrix, Sw =
∑2
i=1

∑
x∈Ci

(x −mi)(x −mi)
T is

the within-class scatter matrix, µ =
∑2
i=1 Pimi is the mean

sample vector, and mi and Pi are, respectively, mean and a
priori probability of class i. A closed-form solution to find-
ing orthogonal discriminant vectors that maximize the Fisher
criterion, can be obtained adopting the Foley-Sammon Trans-
form (FST) [20]. The first direction, d1, corresponds to the
eigenvector associated with the largest eigenvalue of the ma-
trix S−1w Sb. If D =

(
d1, . . . ,dr

)T
is the set of previously ob-

tained directions, dr+1 is found recursively as the eigenvec-
tor associated with the largest eigenvalue satisfying MSbd =
αSwd, where M = I − DT(DS−1w DT)−1DS−1w [21]. The
final color transform matrix is defined by D =

(
d1,d2,d3

)T
.

2.2.1. Spatial decorrelation in lieu of spectral decorrelation

Our approach for finding D above ignored the constraint of
Eq. (2c), finding one that only optimizes for separation. We
could find a new transform D′ that is close to D whilst trying
to satisfy Eq. (2c), or equivalently, since we know that the
(a)KLT optimizes Eq. (2c), we can pose:

minimize
D′

‖D′ −D‖F + λ‖D′ − K̃‖F , (3)

thus, finding a transform that is between D (application-
aware, obtained offline) and the aKLT (data-aware, obtained
at the sensor). However, while this adapts the supervised
transform to unseen data on the sensor and will have decor-
relating properties, from a computational perspective it is not
attractive, and possibly prohibitive for a low compute-power
device. On the other hand, we can exploit the separation prop-
erties of D, [20], to obtain spatial decorrelation and recover
potential losses in bit rate performance when using solely D.

Spatial decorrelation can be used in an encoder with re-
gion of interest (ROI) coding capability (e.g. JPEG 2000
[22]). Thus, we identify potential ROI masks solely on the
basis of the transform D. With respect to other approaches
obtaining the ROI information from a module external to the
encoder [23], this reduces computational overhead.

(a) Original (b) FST

(c) KLT (d) aKLT

Fig. 1: (a) Test image and projection on the first component
of (b) FST, (c) KLT, and (d) aKLT, respectively. Notice the
good discrimination capability of the plant objects in (b), and
the high similarity between output of KLT (c) and aKLT (d).

The first channel of the FST domain, y(1)i = dT1xi, corre-
sponds to the projection on Fisher’s discriminant vector (see
Figure 1b). In an unseen image, to obtain an ROI estimate,
Γ(θ∗) ∈ {0, 1}n, we decide the class of a pixel (foreground
or background) based on a single threshold θ∗ on the values
of y(1)i . Rather than making any statistical assumptions on the
distribution of the data (e.g., Gaussian), for which optimal θ∗

have known closed-form solutions, we estimate θ∗ from our
training set, maximizing the average Dice Similarity Coeffi-
cient, θ∗ = arg max θ (2 · |ΓGT ∩ Γ(θ)|) / (|ΓGT|+ |Γ(θ)|),
between the ground truth of pixels, ΓGT, and the classifica-
tion obtained with D and threshold θ on the training data.

3. RESULTS AND DISCUSSION

3.1. Experimental settings

The proposed methodology is evaluated on a dataset of 20
images (3108×2324 pixels) from a time-lapse sequence of 19
arabidopsis plant subjects (Figure 1a). These images are ideal
to showcase the methodology since they are usually large and
due to design requirements they need to be communicated via
the Internet to centralized locations for processing [23].

We include in the comparison plain RGB and YCbCr
(ITU-R BT.601) [2]. KLT and aKLT are computed for each
image. FST is estimated on the first image of the sequence,
and then applied to all subsequent ones. After color space
transformation, images are compressed at various bit rates us-
ing the JJ2000 software implementation1 of JPEG 2000 [22].

The approaches are evaluated according to: (a) recon-
struction accuracy, measured with PSNR in image domain,

1http://code.google.com/p/jj2000/



Table 2: Reconstruction accuracy comparison.

Average PSNR (dB)

Rate (bpp) RGB YCbCr KLT aKLT FST

0.0625 26.75 27.07 27.28 27.33 26.82
0.125 27.86 28.31 28.44 28.45 27.94
0.25 29.09 29.53 29.58 29.58 29.12
0.5 30.53 30.78 30.81 30.80 30.49
1.0 32.39 32.39 32.28 32.26 32.07
2.0 34.86 34.68 34.48 34.36 34.43

and (b) application error. To estimate application error we
first build a rudimentary classifier. Similar to the approach
in [24], we train a Gaussian mixture model,M, on color fea-
tures, using labeled foreground (plant) data from the first un-
compressed image (excluded from testing). At each bit rate,
we calculate the application error, EM = 1

n

∑n
i=1(M(xi)−

M(x̃i))
2, between the probabilistic output of M evaluated

on the n original, xi, and reconstructed, x̃i, image pixels.

3.2. Results

In this section, we present the rate-distortion performance of
the proposed approaches. We first compare them in terms
of overall reconstruction accuracy. Next, we demonstrate the
supervised approach in an application-aware context.

Table 2 reports image fidelity results. At low bit rates (< 1
bpp), decorrelating transforms (YCbCr, KLT, aKLT) achieve
better performance than RGB (0.25 to 0.6 dB improvement
in PSNR), with the data-dependent transforms (KLT, aKLT)
outperforming the fixed YCbCr. Notably, our proposed low-
complexity aKLT, K̃, exhibits performance very close to reg-
ular KLT (on average 0.04 dB difference). As also found by
others [25], at higher bit rates RGB representation is the best
option, due to noise amplification effects of the transforma-
tions and reduced quantization. The supervised FST, D, does
not provide any PSNR benefits (performance comparable to
RGB with 0.5% relative change, on average across bit rates),
probably due to lacking decorrelation capabilities.

On the other hand, the aKLT shows good decorrelating ca-
pabilities: in the aKLT domain, on average, second and third
channels have linear correlation of 0.05 ± 0.16, and with the
first channel of 0.11±0.26 and−0.28±0.05, respectively. In
order to assess the sensitivity of the aKLT to the random ini-
tialization, we compute 100 different realizations of K̃. The
behavior of the aKLT oscillates only minimally, with an aver-
age (across bit rates) standard deviation of 0.06 dB in PSNR.

Figure 2 compares the approaches from an application
standpoint. Color transformation provides up to 1.17 dB im-
provement in foreground PSNR relative to RGB, with the FST
now competitive. When used in a spatial decorrelation con-
text to estimate an ROI, combined with the ROI coding fea-
ture of JPEG 2000, the FST + ROI approach obtains a major
improvement at all bit rates: 0.8 to 7.7 dB increase in fore-
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Fig. 2: R-D performance using application-aware metrics:
(top) reconstruction accuracy of the objects of interest, and
(bottom) model error EM, averaged over all test images.

ground PSNR, and 4 to 56% reduction in application error.
The results envision different use cases for the proposed

approaches. The aKLT is general purpose and can be effi-
ciently calculated on a per image basis to target reconstruction
accuracy. The supervised approach is suited for application-
aware compression and is computed offline. The regularized
versions of Eq. (3), will be highly dependent on the free pa-
rameter λ and their performance is expected to lie within the
bounds of the other two. Therefore, it is best to exploit the
classification abilities of the supervised FST to focus bits spa-
tially, which is considerably less computationally demanding.

4. CONCLUSIONS

We address the problem of designing image-adaptive color
transforms for coding applications. In recognition of supe-
rior performance of the KLT with respect to fixed transforms,
we derive a low-complexity approximation, the aKLT, capa-
ble of comparable performance, easing adoption on devices.
We also formulate a novel supervised approach to obtain color
transforms with class separation capabilities, identifying a so-
lution in the FST. We use its classification property to inform
the encoder where to focus bit rate, thus improving both re-
construction and application accuracy. When coupled with
quantizer design even greater bit rate savings are possible, but
that would violate standard compliance. Increased image res-
olution is expected to emphasize the benefits of the proposed
approaches. While we adopt JPEG 2000, our methodology is
general and can be adapted to other coding schemes (assum-
ing an ROI-capable encoder for the supervised approach).
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