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ABSTRACT Nevertheless, in many cases, fractal analysis with fraatio
Brownian fields, which are isotropic by definition, is not com
pletely satisfactory, in particular when the considereth ahs-
play some anisotropy. Therefore, many stochastic modeis ha
been introduced in the literature to take into account tipese
Liple additional anisotropic properties. Let us cite nbtditac-
tional Brownian sheet defined ifl[9,110] and anisotropic frac
tional Brownian field (AFBF) introduced by Bonami and Es&rad
in [11] which are two classical examples of Gaussian fieltissa
fying global anisotropic properties. Other models of anisotropic
textures called locally parallel textures, have also beeemtly
introduced in [[12]. The mathematical definition and compu-
tational synthesis of anisotropic textures is an imporissie,
Index Terms— Prescribed orientation, anisotropic self- since it provides flexible models enabling to test estinmagim-

This paper presents a new framework for oriented textureatrod
ing. We introduce a new class of Gaussian fields, cdltechlly
Anisotropic Fractional Brownian Fieldswith prescribed local
orientation at any point. These fields are a local version of
specific class of anisotropic self-similar Gaussian fielih ata-
tionary increments. The simulation of such textures is iobta
using a new algorithm mixing the tangent field formulatiorl an
a turning band method, this latter method having provedfiis e
ciency for generating stationary anisotropic texturesmirical
experiments show the ability of the method for synthesierf t
tures with prescribed local orientation.

similar Gaussian fields, turning bands, oriented textures cedures of the anisotropic characteristics of an imagee Mer
focus on anisotropitocal propertiesof Gaussian textures and
1. INTRODUCTION provide a new Gaussian model whose anisotropic properrges a

prescribed at every point. It is a first preliminary and intpot

Texture modeling is a challenging issue of image processingjteP in defining new statistical estimators of the local @inigic
There is a variety of texture methods in the field of computef€atures of a given texture. _ . .
vision, namely structural, statistical, model-based aaasform- The paper is organized as follows. Section 2 briefly reviews
based methods. Thus, identifying the perceived charatiteriof d.eflnlpons and. characterizations of a cIa;s of §elf-smﬁ4aus-

a texture in an image (regularity, roughness, frequenayteza ~ Sian fleld§ derived from the AFBF. Section 3 is Qevoted _to the
directionality, etc.) is an important first step towardsldimg ~ Presentation of our model, from both the theoretical andeémp
mathematical models for textures. We are interested imtegt Mentation point of view. Finally, we provide the synthesis o
presenting same similar patterns at different scales cdteis the numerical textures, for several vector fields of local awdions,
case for objects appearing in the nature, like clouds or rzoum ~ Showing the ability of our approach.

We focus on stochastic models with a property of self-sirityjla
characteristic of a fractal behavior. The stochastic mbdaind
fractal analysis is the fractional Brownian field (FBF), aiis a
multi-dimensional extension of the famous fractional Bniawn
motion (FBM) introduced in 1940 by Kolmogorovi[1] as a way

to generate Gaussian “spirals” in Hilbert spaces. The pyegie Let0 < H < 1. The fractional Brownian fieldwith Hurst
study of the FBM started with the seminal paper of Mandelbrot,,qex 17 denoted byBH = {BH(x);x € R?}, is the unique

and Van Ness [2]. The FBM has now become a standard modelg|.yajued centered Gaussian field satisfying the folhgwi
it is used in many areas such as hydrology, economics, f'mancﬁroperties: — almost sureB? (0) = 0,

physics and telecommunications (see, €.g., [3], [4], B eef- _ pH zqmits stationary increments, i.e, for everyc R2,
erences therein for more details). The FBF has also beeglyarg _ ., HiN £ oH "

used in medical applications, with for instance the studgsibn BY(-+2) - B¥(z) = B"(:) - B7(0),

detectability in mammogram texturés [6], assessment aistre — B is H self-similar, i.e¥A € R*, B (\.) £ N BH .),
cancer risk([7], and the characterization of bone architector  _ B# s isotropic, i.e, for every rotatio® in R, Bf o R £
the evaluation of osteoporotic fracture risk [8]. BH,

2. ANISOTROPIC SELF-SIMILAR GAUSSIAN FIELDS

2.1. The fractional Brownian field

The authors acknowledge the support of the French Agendierd whereZ denotes equality for all finite dimensional distributions.
de la Recherche (ANR) under reference ANR-13-BS03-0000@TRES). The FBM is wholly characterized by its covariance function,
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Fig. 1. Examples of FBF with (a}f = 0.3, (b) H = 0.7. Fig. 2. AFBF with H = 0.5, ap = 0 and (a)a = 7/6, (b)
a=T7/24.

which is given, for everk,y € R? by
u u - - - for some0 < a < /2. Note that we then recover tiedemen-
Cov(B” (x), B"(y)) = cu(IIx[*" +[ly[*" = l[x=y[I*7) , tary fieldsof [13], which are a particular case of AFBF. When

. . . = m/2, this model corresponds to the usual isotropic FBF of
cygr being a well-known nonnegative constant dependingdon o =/ b b

. . X . . HurstindexH (Fig.[d), but as soon ds< « < 7/2, the field is
Following [3], the FBM can also be defined by its harmonlzableno longer isotropic, since the non-zero frequency argusnaret

representation: restricted betweer o + ag anda + «ap.
eix€ 1 Simulation algorithms for Gaussian fields use the covaganc
BH(x) = / HEHTHdW({), (1)  function [12]. But their high complexity is a real problem to
R2

produce large textures, and the covariance function isxplice
itly known in general case. With respect to the AFBF, a recent
fast method has been proposed[in| [13], called the turning ban

parameter of the FBF, as an indicator of the texture roughnesmethOd' and used here to simulate the textures of[frig. 2, with

The greatet{ is, the smoother the resulting texture is, as can bquObaI orientatiomy = 0. Remark tha}t the more the sector
seen in Fig1L. decreases t0, the more the frequencies concentrate along the

horizontal axis, so the resulting texture appears velyicai-
. ) e L ented, as a consequence of the Fourier transform propeftes
2.2. General anisotropic self-similar Gaussian fields small a, we obtain a strongly stationary oriented texture in the

In order to introduce anisotropy in this model, Bonami anddirection orthogonal texy = 0 like in Fig.[2 (b).
Estrade([[111] replaced the Hurst indékin (T)) by a function of

wheredV is a complex Brownian measure ard £ denotes
the dot-product oR2. The Hurst indexH is a fundamental

the direction of¢ and then derived a new class Ahisotropic 3. ANEW CLASS OF GAUSSIAN FIELD WITH
Fractional Brownian Field(AFBF) by: PRESCRIBED ORIENTATION
ix-€ _ .
_ e 1 = 3.1. Definition
X(x) = /]Rz de(ﬁ)- 2

We now define our new Gaussian model as a local version of
More generally, a larger class of anisotropic models canebe d the elementary field defined inl(3) with density givenBy (4ghwi

fined as h = H andc as in [3). More precisely, we define the follow-
ing Gaussian field, that we cdliocally Anisotropic Fractional
X(x) = / (e™& — 1)f1/2(§) dW(E), (3)  Brownian Field(LAFBF):
R2
_ ix-€ 1/2 7%
where the spectral densifyis of the form X(x) = /Rz(e 1) f7(x,€) dW (), (6)
112(6) = c(arg &) g =O (4 Wi e
o _ . FY2(%,€) = caga(x,arg€)[1€] 77, (7)
Here,c andh are twor-periodic functions, defined on the inter- Cap,a (X, 18 &) = 1[4 o (arg(€) — ap(x)), o)

val (—7 /2, w/2] with ranges satisfying((—7/2,7/2]) C R _ ) _ ) ) _
andh((—7/2,7/2]) C (0,1). Whenc andh are both constant, €0 being now a differentiable function oR“. Our Gaussian

we recover a FBF of ordeil = /. field is derived from AFBF in a similar way thaviultifractional
To definestationary anisotropic modelsith globalorienta- ~ Brownian Motion(MBM) from FBM, since we replace the ori-
tion ao, one can sek = H in @) and: entation parametet, with a function depending on the spatial

locationx, whereas in the case of MBM the Hurst ind&k of
Cag,a(arg(§)) = 1j_q,q (arg(§) — ao), (5) FBM was allowed to vary spatially T15].
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Fig. 3. (a) Texture resulting from the vector field orientatﬂ’?i@ v) in yellow, (b) zoom around the red poiry = (z,y) that
shows locally an oriented elementary field, (c) diagranstliating each parameter of the LAFBF model.

3.2. Tangent fields at every point integral expression for the variogram¥,:
To describe the local properties and simulate our new cléss o 1 )

ian fi i i v, () = 5 [ [e%E =112 f(x0, €)dE
Gaussian fields, we shall use the notion of tangent fieldstbat Y=o 2 Jge 0
now briefly review. Recall that the random fieK is locally 1 /2 )

. L . _ 2H

asymptotically self-similar of ordeH € (0,1) if forany h € = §W(H)/ Caga(X0,0) [x - u(0)]*" db
RR? the random field /2 (10)

pH ’ The integral[(ID) is of the fornfl/i2 Do (x - u(f))do with
09 = $7(H)Cag,a(x0,0)] - |*". Ignoring the factor
admits a non-trivial limit in lawYy, asp — 0 (see [16], and %V(H)Cao « (%0, 0), we recognize that, is the variogram of a
[17, [1€] for a more general definition). The field,, is then  Fgwm of order H. ConsequentlyYy, can be viewed as a sum
called the tangent field ok’ atxo. Roughly speaking, the ran- ¢ independent FBM rotating around the origin. Discretigth
dom field X admits the tangent fiel®fk, at a given pointxy if in an ordered seff;)1<;<, of n band orientations, and let be

it behaves locally ag’x, whenx — xq. This notion has been (Mi)1<i<n the associated band weights = 6;,; — 6;, the
first introduced in[16] to describe the local behavior of Kl - rning band fieldsake the form

fractional Brownian Motion (which behaves locally as a FBM)

We can prove that the LAFBK of (6) admits a tangent field vInl(x) = ~(H)3 - /\ 0. BH (x - u(6:
Yx, at any pointc, € R? defined as: xo (%) = 7(H) ; iCav,a(X0, 01) B (x - u(0:)),
(11)

_ ix€ 1/2 T where theB/?’s aren independent FBM of ordeH . This dis-
Yo (%) = /Rz (e DI (x0,€) dW(E) - ©) crete version is a good approximation, providedx \; < ¢ for

] . e sufficiently small.
We observe that the tangent fiélg,, is no more and no less than — Simulation along particular bands

an elementary field using the terminology bf [13]. This résul |, practice, we consider a discrete gridZ2 N [0, 1] with
shall be crucial when simulating this Gaussian model aslddta . _ ok _ 1,k € N*. Following [I3], we choosé; such that

in the next section. tan(6;) = £-, with p;, ¢; € Z, thenBf (x - u(6;)) becomes
3.3. Simulation of Locally Anisotropic Fractional Brownian {Bfl (ﬁ cos; + @ sin 9¢) (0 < ki, ko < 7«} £
Field "y r
cos 8; H ’

Simulation of tangent fields The simulation of a LAFBF will ( g ) {Bi" (k1gi + k2pi); 0 < by, by <}
first require the simulation of a tangent field at every point (12)
We follow below the methodology of [13] using the turning and then can be generated using the fast algorithm of Petrrin
bands method. al. [19] on a regular grid.

— Discrete formulation of the tangent field — Dynamic choice of discrete bands

By a change of variable in polar coordinates, one can derive aFinally, the choice of the bands orientatiofts)1<;<» is gov-



Fig. 4. Texture resulting from the vector fieTa(Qz )" Fig. 5. Texture resulting from the vector fieﬁf’z )

erned by the global computational cost of tB¢', within dy- 3.4. Oriented texture synthesis

namic programming [13]. The parameters used in simulations are= 255, H = 0.2,

a = 107!, ande = 1072. To avoid numerical artifacts
Simulation of the LAFBF. As observed in[[15] for the due to the discrete formul&{111) we consider a regularized ve
MBM, a Gaussian field can be simulated from its tangent fieldsSiON Ca,,« Of the indicator functionc,, . typically a Gaus-
The LAFBF behaving locally like its tangent fields, for every sian. Forag constant, we recover the results 6f [13] (see
pixel xo, we aSS|an(x0) _ [n] "l(x0). The pseudocode of Fig.[2). We present now realizations of textures with pre-

the algorithm is given below, and the corresponding Matlabscr'bed local orientation at each poiqgi, given by a vector field
code is available on the webpage[20]. A preprocessing stelxo = W(o(Xo)). Fig.[3(a) displays a texture resulting from
(instructions 1,2,3,4 in the pseudocode), which does np¢dé  the vector erIdV( W = (cos(—=m/2 4+ y),sin(—7/2 + y)).

on the expected local orientations, includes the dynarmiiceh A zoom around a pomto (in red, Fig[3(b)) shows that locally
and sorting of discrete bands, and the simulation ofitkeM. a LAFBF behaves as an elementary field. . 3(c) sketchs
These steps are executed once and for all. The rest of the ahe local density function ak, and the different parameters.
gorithm is of complexityO(r? logn). Indeed, at_feach p(l)int We then consider two others types of vector fie[@%,y)
e o, (o) sfonahay) ana Vi, = V(1.1
since the array); is sorted, one such indexs founded using a  With F(z,y) = (4x — 2)e~(47=2°~(4v=2)" yith the resulting
binary search, and then the others in its neighborhood. textures in Figs{J]5. As expected, the textures obtainéd wi
our approach present local anisotropic behavior, with @ction
orthogonal to the vector field. Moreover, the simulation of a
256 x 256 texture takes only a few seconds.

Algorithm 1 Simulation of the LAFBF
Input: r=2% -1, H, ag, a, €
Output: X LAFBF of size(r + 1) x (r+1) 4. CONCLUSION

1: (pi, ¢i)1<i<n < DynamicBandsChoide, ¢)

2: Compute and sort anglé&‘)l@g_" +0; « atan2p;, ;) We introduced a new stochastic model defined as a local versio

3: Compute width bang@‘i)l.@@ P A Oy — O of an anisotropic fractional Brownian field. We took advaga

4: Generate) FBM : B;” « circFBM(r(|p;i| + |¢:|), H) of tangent field formulation and the turning bands methodde p

5: Initialization : X' « 0 vide an efficient algorithm to simulate textures with présed

6: forall (ki k2) do local orientations. We are currently improving the methgd b

7. fori=1tondo H removing numerical artifacts which appear for greater eslaf

8: wi = /Aiv(H)cag,a((k1, k2), 0;) (%) the Hurst index H. Future extensions of our model includessau
) ’ sian fields whose Hurst index and local orientation may vpay s

1?)'_ en‘;(%rl’ ko) = X (ki ko) + wiBJ! (ki + kapi) tially. A forthcoming.wo_rk will focus on its_application toatu-

11: end for ral texture characterization and classification, as wetkatoon-

texture image decompositidn [21].
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