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ABSTRACT

We propose a new parametric 3D snake with cylindrical topol-
ogy. Its construction is based on interpolatory basis functions
which facilitates user-interaction because the control points
of the snake directly lie on the surface of the deformable
cylinder. We prove that the basis functions exactly reproduce
a cylinder and propose a new parametrization as a tensor-
product spline surface. We provide explicit formulas for the
energy function based on Green’s theorem that speed up the
computation of the optimization algorithm. We have imple-
mented the proposed framework as a freely available open-
source plugin for the bioimaging platform Icy. Its utility has
been tested on phantom data as well as on real 3D data to
segment the spinal cord and the descending aorta.

Index Terms— spline snakes, splines , active contours,
3D segmentation, medical, aorta

1. INTRODUCTION

The development of methods for the assessment of physiolog-
ical structures and measurements using 3D imaging modali-
ties is an active field of research. They are crucial for correct
diagnosis of diseases, risks or malformations. The segmenta-
tion of complex structures in 3D is difficult without making
use of a template [1]. In that case one needs to deal with the
problem of how to construct an accurate atlas representing a
whole patient population. For anatomical structures where the
shape is simpler, such as the aorta, spinal cord, vena cava or
the coronary arteries, which are topologically equivalent to a
cylinder, this prior information can be exploited to design spe-
cialized segmentation algorithms. This motivates the devel-
opment of a deformable model with few degrees of freedom.
Existing methods for the segmentation of vascular structures
often rely on a large number of parameters, such as mesh- [2],
tensor- [4] or tracking [4]- and path minimization [5]-based
models.
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We propose a new method for the segmentation of structures
with cylinder-like topology such as the aorta or the spinal
cord. Our method is atlas-free and accounts for the possi-
bility of user-interaction. It relies on a new parameterization
of the cylinder using compactly supported basis functions and
the resulting shape is smooth by construction. We show that
the bases perfectly reproduce the cylinder as a tensor-product
spline surface. Furthermore, they are interpolatory which im-
plies that the control points of the shape, which are accessible
to the user, directly lie on the surface; a property that allows
intuitive and easy user-interaction because each basis func-
tion is associated with a control point on the surface. Our
model has the advantage that much fewer parameters need
to be used for the representation of the shape as opposed to
mesh-based methods [6, 7, 8]. This allows a fast and robust
optimization because it constraints the space of the possible
segmentation solutions. Using the new proposed parametric
surface, we construct a 3D snake and provide an explicit ex-
pression for a contour-based energy function that attracts the
snake towards the boundary of interest [9, 10, 11]. The pro-
vided energy function enables an explicit computation of its
gradient; a property that can be exploited for an efficient im-
plementation. Finally, we have tested the robustness w.r.t. to
noise on test data and we have performed an evaluation on
real MRI data using a cohort of 14 healthy subjects [12] to
segment the descending thoracic aorta; a region that is of in-
terest to measure hemodynamics after thoracic endovascular
aortic repair as well as aneurisms [13] (see Figure 1). Our
method applies to 3D MRI as well as to CT images.

2. NEW PARAMETRIZATION OF THE CYLINDER

In this section we present a new parametrization of the cylin-
der as a tensor-product spline surface. For this purpose our
basis functions need to be able to reproduce circles and el-
lipses as well as first degree polynomials.

2.1. Reproduction of circles and ellipses

We consider the following basis function:



Fig. 1. Segmentation of the aorta with the cylinder snake
in 3D MRI. The red wireframe represents the surface of the
snake and the blue dots are the control points.
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Proposition 1. The basis ϕ1 “ φp¨ ` 2q is an interpolator
and is capable of reproducing the complex exponentials ej2πt

and e´j2πt independent of the number of control points M .

Proof: In order to show that ϕ1 is an interpolator we notice
that the n-th order exponential B-spline has support n. Thus,
ϕ1 has a support equal to 4. By imposing the corrspond-
ing interpolation conditions on (1) and solving for λ1 and
λ2 we obtain the weights given by (2) and (3). In order to
prove the reproduction properties of ϕ1 we use the exponen-
tial reproduction properties from the exponential B-spline,
i.e. if α P α, then there exists a sequence prks such that
eαt “
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From [14] (Proposition 2) we know that if a function ψ re-
produces exponential polynomials then ψ̃ ˚ψ also reproduces
these exponential polynomials if ψ̃ satisfies some mild condi-
tions. Thus, since βα1
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we see that φ also reproduces the exponential polynomials
given by (4). By replacing t by t ` 2 in (4) we directly see
that ϕ1 has the same reproduction properties as φ. By choos-
ing α “ ˘

j2π
M we directly obtain the complex exponentials

described by Proposition 1.

Corollary 1. The interpolator ϕ1 reproduces cosp2πtq and
sinp2πtq independent of the number of control points M .

Proof: By exploiting the exponential reproduction property
of B-splines and the property of ϕ1 of being an interpolator
we write
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In a similar way we obtain sinp2πtq. �
Plots of the reconstructed trigonometric functions are shown
in Figure 2 as well as the circle r obtained through the para-
metric equation rptq “ pcosp2πtq, sinp2πtqq.

2.2. Reproduction of 1st degree polynomials

The parametric representation of the cylinder as a spline sur-
face requires that at least one basis function reproduces 1st

degree polynomials. We use the Keys interpolator [15] which
is in C1 and reproduces 2nd degree polynomials. It is given by
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Fig. 2. Top left: Keys interpolator (blue) and the pro-
posed ellipse reproducing interpolator (red). Top right:
the circle obtained with the parametric equation rptq “
pcosp2πtq, sinp2πtqq. Bottom: cosp2πtq (left) and sinp2πtq
(right) are shown together with the basis functions forM “ 3.

Its support is also equal to 4 as for ϕ1. A plot of the line that
has been reproduced with ϕ2 is shown in Figure 3.

Fig. 3. Reproduction of the line and weighted basis functions.

2.3. Reproduction of the cylinder

Proposition 2. The normalized cylinder surface can be ex-
pressed as
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An important property of the surface that we use to construct
the snake is that it must be able to outline shapes irrespective
of their size, orientation and position. It must therefore be
invariant to affine transformations, i.e.

Aσpu, vq ` b

“
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ÿ
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(7)

where A is a 3 ˆ 3 matrix and b P R3. It is easy to see that
equation (7) is automatically satisfied if the basis functions
ϕ1 and ϕ2 satisfy the partition of unity. A plot of the resulting
surface is shown in Figure 4 (left).

3. 3D PARAMETRIC SPLINE SNAKE

To construct the snake we need to define an energy functional
that can be minimized in order to attract the snake surface
towards the boundary of interest. We use a gradient-based
energy similar to the one proposed by [9]. It is given by



Fig. 4. Cylinder snake. Left: wireframe representation of the
cylinder created as a tensor-product spline surface given by
Proposition 2. The blue points are the control points. Right:
simultaneous segmentation of the spinal cord (blue) and the
thoracic descending aorta (red).
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Equation (8) allows to compute a closed-form expression of
its gradient w.r.t. to the control points, which enables an effi-
cient implementation of the optimization algorithm.

4. EXPERIMENTS

We have implemented and validated our proposed framework
on artificial as well as on real 3D MRI data. For the phan-
tom data, we created a perfect 3D hollow cylinder and cor-
rupted the image with increasing levels of additive Gaussian
white noise. The overlap between the initial position of the
snake and the perfect cylinder corresponds to a Jaccard in-
dex of 0.12. The signal-to-noise ratios (SNR) and resulting
overlap measures are shown in Table 1.

Table 1. Jaccard indices for segmentation of (noisy) data.
SNR rdBs (stdd) Jaccard index

8 (-) 0.94
9.91 p10q 0.94
0.27 p30q 0.94
´4.17 p50q 0.94
´7.10 p70q 0.92
´9.21 p90q 0.92

We have validated the snake on real data. A gold standard
was created by manually segmenting by an expert clinician
the thoracic descending aorta on 14 scans taken from healthy
subjects. The mean overlap measures w.r.t. to the initial posi-
tion and segmentation results are shown in Table 2 as well as
the standard deviations (std).

Table 2. Mean Jaccard indices for segmentation of real data.
´ mean Jaccard index (std)

initialization 0.23 (0.23)
result 0.96 (0.02)

The optimization is carried out by a Powell-like line-search
method [16]. The segmentation took less than 4 seconds on
average on a 2.3 GHZ processor with 8 GB RAM. Further-
more, we have also successfully tested the framework for
computed tomography data and for the segmentation of the
spinal cord in 3D MRI (results will be published elsewhere).
An illustration of a real 3D MRI scan where the spinal cord
and the thoracic descending aorta are segmented are shown
in Figure 4 (right).

5. CONCLUSIONS

We have proposed a novel parametrization of the cylinder in
order to construct a 3D snake. We have shown how to per-
fectly reproduce the cylindrical topology using interpolatory
basis functions. This allows the construction of a tensor-
product spline surface where the control points lie on the
surface itself; an advantage for user-interactive applications.
We provided an explicit formulation for a gradient energy.
The results obtained on real data are promising. Furthermore,
our experiments show that the proposed algorithm is robust
to noise. An implementation of the proposed framework
is freely available as an open source plugin for Icy [17] at
http://bigwww.epfl.ch/algorithms.html.
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