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ABSTRACT
Wearable computing technologies are advancing rapidly and
enabling users to easily record daily activities for applica-
tions such as life-logging or health monitoring. Recognizing
hand and object interactions in these videos will help broaden
application domains, but recognizing such interactions auto-
matically remains a difficult task. Activity recognition from
the first-person point-of-view is difficult because the video
includes constant motion, cluttered backgrounds, and sudden
changes of scenery. Recognizing hand-related activities is
particularly challenging due to the many temporal and spatial
variations induced by hand interactions. We present a novel
approach to recognize hand-object interactions by extracting
both local motion features representing the subtle movements
of the hands and global hand shape features to capture grasp
types. We validate our approach on multiple egocentric ac-
tion datasets and show that state-of-the-art performance can
be achieved by considering both local motion and global
appearance information.

Index Terms— Wearable cameras, first-person point-of-
view, activity recognition

1. INTRODUCTION

Wearable cameras do not restrict the user’s activity and can
easily record daily activities from a first-person viewpoint.
Analysis of these videos has been actively explored for dif-
ferent applications, such as recognizing events [1][2], inter-
actions [3][4], ego-actions [5] and handled objects [6][7]. In
this work, we focus on recognizing hand-object interactions
in wearable videos. Recognizing hand and object interactions
while eating or preparing foods can be useful for monitoring
the wearer’s diet.

Recognizing what the hands are doing is a challenging
task for two primary reasons. The first reason is the difficulty
of recognizing actions from the first-person viewpoint. The
videos recorded by wearable cameras contain continuous mo-
tions caused by the platform’s own motions, cluttered back-
grounds, and sudden changes of scenery. These characteris-
tics make automatic recognition harder. The second reason is
the difficulty of recognizing the activities of the hands. Hand
motions have significant temporal and spatial variations, and
similar motions and configurations of a hand may be related

to completely different activities. For example, grasping an
object with two fingers and grasping the object with all fin-
gers share similar movements at the level of some parts of the
hand.

Activity recognition from videos recorded in third-person
viewpoints has been extensively studied [8], with particular
focus given to features based on optical flows such as HOF
[9] and MBH [10]. These features can extract local motion
features from keypoints, and previous research has shown that
these features are effective for recognizing whole-body activ-
ities. Wang et al. [11] proposed dense trajectories to effec-
tively sample the keypoints for activity recognition. The ad-
vantage of their approach is that it can extract statistically reli-
able features by densely sampling keypoints. They calculated
the motion features at each keypoint by using dense optical
flows [12] and tracked the keypoints for fixed time periods to
avoid drifting. From each keypoint, the HOF and MBH are
extracted to represent the local motion features and the HOG
[13] is extracted to represent the local shape features. They
also introduced trajectory features that represent the relative
movement of each keypoint. In the recent activity recognition
challenge [14], Peng et al. [15] showed that dense trajectories
gave the best results. Although there have been significant im-
provements in whole-body activity recognition, hand activity
recognition is still challenging because local features do not
contain enough information and information about hand con-
figuration is needed to disambiguate similar actions.

To improve the performance of hand activity recogni-
tion in the first-person views, past research [16][17] has
shown that recognizing handled objects helps to infer hand
activities. Complementary to previous work, our proposed
work performs hand activity recognition by focusing on the
hands. Baradi et al. [18] applied dense trajectories to ges-
ture recognition in the first-person views. They introduced
pixel-level hand detection [19] to reduce tracking keypoints
and improved both accuracy and performance. Although they
demonstrated that dense trajectories can be applied for ges-
ture recognition in first-person view scenarios, they used only
local features from dense trajectories.

In this paper, we introduce a novel approach for hand
activity recognition in the wearable viewpoint to overcome
the difficulties described above. We extract both local fea-
tures representing the movements of each part of a hand and



Fig. 1. Proposed method

the global shape features representing the hand’s grasp type.
These features can be robustly extracted even in a cluttered
environment by using pixel-level hand detection. Our exper-
iments showed that the proposed method outperforms the
state-of-the-art action recognition methods currently used to
recognize hand activities in first-person viewpoint scenarios.

2. COMBINED MOTION AND SHAPE APPROACH

To distinguish hand activities that share similar motions but
different hand configurations, we introduce a novel comple-
mentary feature approach that consider two different types of
features: dense local motion features and global hand shape
features. Fig. 1 shows an overview of our approach.

Dense Local Motion Feature: The steps of extracting
the local motion features are shown in the left part of Fig. 1.
We first use dense trajectories [11] to sample and track the
keypoints from the pyramidal images of the input video. The
top left image in Fig. 2 shows all of the keypoints sampled
with dense trajectories. We extracted HOF/MBH/HOG fea-
tures from all keypoints because past research has shown
that extracting different types of features from all keypoints
improved the performance of activity recognition [11][18].
MBH is particularly helpful in our scenario because it is
robust against camera motion [10].

Global Hand Shape Feature: The steps of extracting the
hand shape features are shown in the right part of Fig. 1. We
first detect hands at the pixel level with [19], computing a
hand probability value for each pixel on the basis of the color
and texture of a local surrounding image patch. The output
probabilities are averaged over recent frames to remove noise.
The top right figure in Fig. 2 visualizes the estimated hand
probabilities. We create the binary image by using threshold-
ing to the hand probability of each pixel and then find the
contours of the binary image. We remove any contours that
are too small or too large on the basis of the resolution of

Fig. 2. Top left: Keypoints detected by dense trajectories, Top
right: Estimated hand probabilities, Bottom left: Estimated
hand regions, Bottom right: HOG features extracted by es-
timated hand regions

the input videos. The bottom left figure in Fig. 2 shows the
contours of hand regions. We calculate shape features only
from these estimated hand regions. The bottom right figure in
Fig. 2 visualizes HOG features in the estimated hand regions.
The detection of hand regions to extract hand shape features is
itself a difficult task, and we cannot avoid every false positive
hand detection. Therefore we reduce the effects of false pos-
itive detections in several steps. First, we densely sample the
points only from the estimated hand regions in the pyramidal
images, and extract the HOG features from fixed size rect-
angles whose centers are equal to the sampled points. These
HOG features are calculated for all of the pyramidal images.
We densely sampled 96 × 96 rectangles, and the block size,
cell size, and number of histogram bins for computing the
HOG features were 16×16, 8×8, and 9, respectively. We set
these parameters empirically and obtained a 324 dimension
HOG feature for each sampled rectangle.

Feature Selection and Encoding: To classify the actions
in the input video, we slide the fixed-length time window as
we retrieve each new frame from the video and encode all
the features extracted within the time window. We use Fisher
vectors [20] as the encoding method. For frame t, we extract
the dense local motion features mt from all keypoints and
the global hand shape features st from all sampled rectangles
in the estimated hand regions. These features are high dimen-
sional and may contain redundant information. To avoid over-
fitting, we apply principal component analysis (PCA) to mt

and st. We empirically reduce both of these vectors to 32 di-
mensional vectors m̂t and ŝt. Given the fixed length of time
window L, we obtain two sets of features (m̂t, ..., m̂t−L) and
(ŝt, ..., ŝt−L) for frame t. These two sets of features are en-
coded into Fisher vectors φmt and φst , respectively. The num-
ber of gaussian mixtures to encode Fisher vectors is set to 256
and the dimension of each encoded vector is 16,384. By con-
catenating two encoded vectors as one, we obtain a 32,768
dimensional feature vector ϕt for frame t.



Classifier: Now that we have a frame’s features ϕt for
frame t, we use one-against-one multi-class SVM classi-
fier [21] to predict its corresponding class label of hand activ-
ities. We use a linear kernel function as it works effectively
for high dimensional Fisher vectors[15].

3. EXPERIMENT

In this section, we first present a new dataset, the CMU Dining
Activity (CMU-DA) dataset, which we believe is the first of
its kind. Then, we evaluate the effectiveness of our approach
using egocentric videos from four datasets: (1) the CMU-DA
dataset, (2) the CMU Multi-Modal Activity (CMU-MMAC)
dataset [22], (3) the GTEA dataset [6], and (4) the GTEA
Gaze+ dataset [23]. For all of these datasets, we compared
the following three baselines which also used linear SVM as
classifiers, with our proposed approach:

• Bag of Words (BW): Extract SIFT features [24] and
encode with bag of visual words [25]. The number of
bag of visual words was set to 1,000.

• Dense Trajectories (DT): Detect keypoints by dense
trajectories, then extract features as in [11] and encode
with Fisher vectors.

• Reduced Dense Trajectories (RDT): Reduce keypoints
in the background by using hand detection as in [18].
The other steps are the same as DT.

3.1. CMU Dining Activity (CMU-DA) Dataset
Although humans can differentiate types of dining activity at
a glance, recognizing them accurately still remains a diffi-
cult task for a computer, since different hand activities may
have similar motions and configurations. To improve this sit-
uation, we introduce a new dataset consisting of 167 video
clips. The videos are recorded at 4 different locations under
varying conditions of a person with a Looxcie R© 2. The res-
olution is 640×480 pixels and the frame rate is 25 fps. This
dataset consists of 6 types of dining activity: fork, grab, pinch,
spoon, stir and none. Examples are shown in Fig. 3.

3.2. Recognition of Dining Activities
We evaluated the CMU-DA dataset by setting the length of
the sliding window to 1 second and the gap of the sliding time
window to 0.5 seconds. The keypoints were sampled from 2
levels of pyramidal images by using the dense trajectories.
The sampling step size of the keypoints was set to 10 pixels,
with the other parameters used to extract the trajectory fea-
tures and the HOG/HOF/MBH features the same as in [11].
The dimension of the feature vector for each tracked keypoint
was 30 for the trajectory features, 96 for the HOG features,
108 for the HOF features, and 192 for the MBH features. We
generated 943 video clips, whose length is 1 second, from
the original dataset and evaluated the performance with 5-fold
cross validation.

Fig. 3. Types of dining activity: Top left: none (no dining ac-
tivities), Top center: fork (use a fork), Top right: grab (grab a
cup), Bottom left: pinch (pinch foods), Bottom center: spoon
(use a spoon), Bottom right: stir (stir a coffee)

BW DT RDT Proposed
none 0.71 0.81 0.79 0.87
fork 0.86 0.84 0.71 0.85
grab 0.48 0.66 0.57 0.67
pinch 0.78 0.63 0.65 0.97
spoon 0.59 0.74 0.67 0.88
stir 0.60 0.62 0.62 0.62
Accuracy 0.70 0.78 0.73 0.86

Table 1. F-measure of each class and average accuracy for
CMU-DA dataset

Table 1 shows the F-measure of each class and the last
row shows the average accuracy of all classes. As shown, the
proposed approach improved the average accuracy compared
with the three baselines, and using both hand shape features
and dense motion features improved the performance. RDT
did not improve the results of DT except for the “pinch” class.
This result is different from the results of the hand gesture
recognition shown in [18], indicating that the hand motion
information alone is not sufficient; the motion information of
the interacting objects is also important to recognize hand and
object interactions.

The confusion matrix for DT and the proposed approach
is shown in Fig. 4. The difference between these two ap-
proaches is especially clear for the “pinch” class. This activity
does not contain any large movements at the level of the parts
of the hand, and therefore the local motion features were not
able to distinguish it from other hand activities. This demon-
strates that our global shape features for the estimated hand
region are effective for hand activities that are difficult to rec-
ognize from only the local motion features.

3.3. Recognition of Cooking Activities

To evaluate the performance under more challenging circum-
stances, we validate the effectiveness of our approach using
three public datasets consisting of cooking activities recorded
by wearable cameras.

CMU-MMAC Dataset [22]: This dataset consists of
recordings of cooking activities for 5 different recipes per-



Fig. 4. Confusion matrix for CMU-DA dataset. Left: DT.
Right: Proposed ((a) none, (b) fork, (c) grab, (d) pinch, (e)
spoon, (f) stir).

formed by 25 subjects. For the videos of Brownies, this
dataset provides annotations of the actions. We used the data
for 12 subjects who made both Brownies and Salad. For
training the hand detection model of each subject, we used
the Salad videos. The Brownies videos were used only for
training and testing the hand activity recognition. This dataset
contains annotations for 43 verbs representing the wearers’
actions, and we selected 8 actions for our evaluation: no ac-
tion, stir big bowl, crack egg, pour brownie bag into big bowl,
open brownie bag, pour oil into big bowl, pour water into big
bowl, and pour big bowl into big baking pan. We selected
these actions because they occur frequently and include hand
and object interactions. In total, we used 189 video clips for
all 8 of the actions. This dataset also includes data for the
inertial measurement units (IMU) and extra videos recorded
by fixed cameras. We evaluated only the videos recorded
by the wearable cameras. We resized all of these videos to
480×360 pixels before processing. The length of the sliding
time window was set to 2 seconds and the gap of the slid-
ing time window was set to 0.5 seconds. Other parameters
were the same as for the CMU-DA dataset. We evaluated the
performance with leave-one-subject-out cross validation.

GTEA dataset [6]: This dataset was collected from 4
subjects and records the cooking activities for 7 recipes. We
evaluated this dataset using the settings in [6]. The videos
recorded by Subject 2 were used only for testing and all other
videos for other subjects were used only for training. The
hand detection model for Subject 2 was trained by using the
videos of the other subjects, and the hand detection models
for the other subjects were trained by the videos recorded by
the same subjects. This dataset has annotations for 10 actions
(open, close, fold, pour, put, scoop, shake, spread, stir, and
take), all of which we used for our evaluation. We also added
a “none” action type for this dataset. In total, we used 1,082
video clips for the 11 classes of action. We resized all of the
videos to 720×404 pixels before processing. We evaluated
this dataset by setting the length of the sliding time window
to 1 second, and the sliding time window was moved for every
frame of the 15 fps videos. Other parameters were the same

BW DT RDT Proposed
CMU MMAC 0.59 0.81 0.68 0.84
GTEA 0.39 0.54 0.51 0.58
GTEA Gaze+ 0.50 0.52 0.36 0.56

Table 2. The average accuracy for the cooking activities
datasets

as for the CMU-MMAC dataset.
GTEA Gaze+ dataset [23]: This dataset was collected

from 5 subjects, and records the cooking activities for 7
recipes. From this dataset, we used the videos for the three
recipes (American Breakfast, Pizza, and Afternoon Snack)
that were recorded for all 5 subjects. The Afternoon Snack
videos were used only for training the hand detection model
for each subject. The American Breakfast and Pizza videos
were used for both training and testing the hand activity
recognition. This dataset has annotations for 31 actions for
these 3 recipes, and we selected 6 actions for our evaluation
(cut, distribute, mix, move around, pour, and spread). We
selected frequent actions that include hand and object inter-
actions similar to the CMU-MMAC dataset. We also added a
“none” action type. In total, we used 437 video clips for all
7 classes of actions. All videos contain eye tracking data. We
evaluated this dataset using only the videos recorded by the
wearable cameras. We resized all of the videos to 480×360
pixels before processing. Other parameters are the same as
for the CMU-MMAC dataset. We evaluated the performance
with leave-one-subject-out cross validation.

Table 2 shows the average accuracy for all classes eval-
uated for the three datasets. For all datasets, our proposed
approach improved the average accuracy compared with the
baselines. Note that these three datasets include various types
of different hand and object interactions, and include differ-
ent test subjects. The results show that our approach can be
applied for a wide range of applications.

4. CONCLUSION

Recognizing hand and object interactions is essential for ex-
panding the first-person view applications. We are working
on a novel approach to recognize hand activities. We extract
both the local motion features and the shape features of the
hands. The local motion features represent the movements
of each part of a hand and the shape features represent the
hands configurations. Even against a cluttered background,
the shape features can be robustly extracted from the hand re-
gions that were estimated from the pixel-level hand detection.
Our experiments showed our new approach was better than
the state-of-the-art action recognition approaches for differ-
ent datasets in which the hands interact with objects. We also
showed that our approach is especially effective for hand ac-
tivities that share similar motions at the level of the parts of
the hands, which are difficult to recognize based only on the
local motion features.
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