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ABSTRACT 

In Structure-from-Motion (SfM) applications, the capability 
of integrating new visual information into existing 3D models 
is an important need. In particular, video streams could bring 
significant advantages, since they provide dense and redun­
dant information, even if normally only relative to a limited 
portion of the scene. In this work we propose a fast technique 
to reliably integrate local but dense information from videos 
into existing global but sparse 3D models. We show how to 
extract from the video data local 3D information that can be 
easily processed allowing incremental growing, refinement, 
and update of the existing 3D models. The proposed tech­
nique has been tested against two state-of-the-art SfM algo­
rithms, showing significant improvements in terms of compu­
tational time and final point cloud density. 

Index Terms— 3D Reconstruction, SfM, Video Registra­
tion, Point Cloud Alignment 

1. INTRODUCTION 

Structure-from-Motion (SfM) algorithms applied to large un­
ordered image collections have been proven to successfully 
recover the 3D model of a scene, as well as the camera loca­
tions [1] [2] [3] [4]. At the core of SfM frameworks, Bun­
dle Adjustment (BA) [5] is usually adopted as the optimiza­
tion step for the non-linear joint refinement of camera and 
point parameters. Unfortunately, BA can consume a signif­
icant amount of time as the number of images involved in 
the optimization grows. Although many strategies have been 
proposed to speed it up [6] [7] [8], time complexity is still a 
problem. 

Another issue of most of the current SfM engines is re­
lated to the limited capability in integrating new information 
into pre-existing models. One pioneering work trying to solve 
this issue is reported in [1], and further improved in [9]. Here, 
the authors propose a way to estimate the new camera lo­
cations with respect to the existing point cloud, but without 

adding new 3D information to the model. Another interest­
ing work is presented in [4], but it also does not provide 3D 
model refinement capability. 

In light of these limitations, we propose a novel SfM 
framework, allowing a fast processing and integration of new 
visual information into existing 3D models. Moreover, in­
stead of single images, we consider full rate video sequences, 
enabling 3D model refinement and update to be performed. 
In fact, due to their redundancy and high sampling rate, input 
from video frames can considerably increase the density of 
a portion of sparse point cloud. Our proposal focuses on the 
creation of local models out of the input video sequences. 
This stage can be carried out in parallel for multiple streams. 
Once the local models are computed, they are aligned to 
the base model through feature matching and robust pose 
estimation. 

This paper presents our effort in improving the time com­
plexity and extending the operational scenario of SfM sys­
tems by the following contributions: 

• online video processing and local 3D information re­
covery; 

• a novel approach to automatically recover the ratio be­
tween two point clouds of correspondences with un­
known and arbitrary scale; 

• effective refinement of the existing 3D model through 
integration of 3D information from different point 
clouds. 

The effectiveness of the proposed framework has been 
validated on a real-world dataset, comprising both images and 
video streams. The obtained results show how our pipeline al­
lows a fast 3D point cloud extension while providing a denser 
merged model. 

2. RELATED WORK 

Automatic registration of video streams into sparse point 
cloud aims at recovering the six-Degree-of-Freedom (6-DoF) 
pose of each video frame of a moving camera with respect to 
a given 3D model. 
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Fig. 1. Flowchart of the proposed solution. 

In general, when 3D information is available, registration 
techniques based on Iterative Closest Point (ICP) [10] can be 
applied [11] [12]. One of the most representative works is 
reported in [11], where a technique for aligning video streams 
onto 3D sensor data is proposed. Motion stereo and SfM are 
used to create the 3D models from continuous video while a 
modification of the ICP algorithm is used to align the point 
cloud directly with the 3D sensor data. One of the advantages 
of ICP is that it does not require explicit feature extraction and 
matching. However, a good initial guess must be provided to 
ensure its convergence [13]. Although providing good results, 
ICP-based registration methods suffer from slow convergence 
rate and significant computational complexity: 0{NmNp) for 
point clouds of sizes M and P. 

When 3D information is not available, 2D-to-3D regis­
tration methods can be applied. Two main strategies have 
been proposed, namely direct matching [9] [14], and image 
retrieval [15]. In [9] a location recognition framework is pre­
sented where an image can be localized within a point cloud. 
Since every sample of the model is seen by several images, an 
average 2D descriptor is associated to each 3D point. When 
a query image is given, features are extracted and matched 
against the model average descriptors, providing a set of 2D-
to-3D correspondences that are fed to a pose estimation al­
gorithm. In [15] a dual process of [9] is proposed, a mini­
mal set of virtual images that fully covers the point cloud is 
generated, and when a new query image is given, a vocabu­
lary tree [16] retrieval approach is used to retrieve the most 
similar virtual images. Direct methods achieve a better local­
ization performance than retrieval-based approaches as they 
are able to localize more query images [14]. However, this 
performance gain comes at the cost of memory consumption, 
since direct methods require to store the descriptors of the 3D 
points in memory. 

When dealing with the registration of 3D point sets with 
large scale difference, the scale factor can be recovered in­
dependently [17], or obtained as part of a global optimiza­
tion [18] [19] problem. In [17] the authors propose to char­
acterize the scale of a given point cloud by a set of cumula­
tive contribution rate curves obtained by performing principal 
component analysis on spin images. A variant of ICP is then 
used to register the curves of two point clouds and recover the 
scale. In [18] the authors propose to decompose the registra­
tion estimation in a sequence simpler steps: first, two rotation 

angles are determined by finding dominant surface normals, 
then the remaining parameters are found with RANSAC [20] 
followed by ICP and scale refinement. In [19] for automatic 
registration of images on approximate geometry is presented. 
Here, the point cloud is first roughly registered to the 3D ob­
ject using a variant of the four points congruent sets algo­
rithm. A global refinement algorithm based on mutual infor­
mation is then applied to optimize the color projection of the 
aligned photos on the 3D object. 

3. VIDEO-TO-POINT-CLOUD ALIGNMENT 

An overview of the proposed framework is shown in Fig. 1. 
In the offline stage, the image set is fed into a SfM engine 
which provides the scene base model. Each sample of the 
point cloud is automatically augmented with an average 2D 
descriptor, in the same spirit of [9]. In the same way, the 
video frames are processed, and a number of local models are 
recovered from each sequence. The goal is thus to register 
and merge the base model with all the video local models. 
Relying on the average descriptors, standard feature match­
ing techniques can be applied in order to find corresponding 
points. Given the correspondences, the scale factor between 
the point clouds is recovered. When the models are in the 
same scale, a RANSAC-based routine is run to find the rigid 
6-DoF transformation minimizing the 3D distance between 
the points. The roto-translation matrix is then applied to the 
model points and cameras to align them. In a final step, du­
plicate points/cameras are pruned, and a BA is run to further 
refine the parameters. 

3.1. Preprocessing 

The preprocessing phase is introduced to find corresponding 
samples in the models to merge. To ease the point cloud regis­
tration, we follow the procedure proposed in [9]. In particular, 
we rely on the average descriptor attached to each model point 
to translate the problem of 3D-to-3D point matching to a more 
tractable 2D feature matching one, which can be solved with 
state-of-the art methods. Let Pm = {prrii} and Pv = {pvj} be 
respectively the base model cloud (of M points: 0 < i < M) 
and the local model cloud extracted from a particular video 
sequence (of N points: 0 < j < N). For each model point 
prrii, pvj G R3 a 128-byte SIFT [21] average descriptor is 
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Fig. 2. Histogram of a vector of distance ratios f. 

computed. Standard feature matching allows to find corre­
sponding 3D points between Pm and Pv. These matching 3D 
points form two new clouds of correspondences Cm = {crrik} 
and Cv = {cvk} with k = 0...K. 

3.2. Model integration: scale recovery 

We recover the scale factor between the models adapting the 
distance ratio analysis of matching keypoints introduced in 
[22], and extended to the 3D case in [23]. In [22], in fact, 
in order to detect outliers after the keypoint matching Log 
Distance Ratio (LDR) of couple of matches is computed as 

ldr(cmi, crrij, CV^CVJ) = In ( | ^ I ^ j | ) w i t h C17li ^ cmj 
and CVÍ ̂  CVJ . We adapted the same concept to the scale fac­
tor recovery, dropping the In operation, thus simply comput­
ing the distance ratio (DR). Assuming an error-free matching 
phase, the DR of a random pair of matches directly gives the 
scale between the point clouds. However, the presence of out­
lier matches forces a statistical analysis of the DR for all the 
potential pairs. To this aim, the DR is computed for each pair 
of matching points in Cm and Cv, producing a vector of DRs 
f. An example of DR computed on real point cloud match­
ing pairs is illustrated in Fig. 2. Finding the correct scale 
ratio between the clouds corresponds to locate the DR of the 
inlier matches. To this aim, the median DR value M? is com­
puted and the interval inl? = [M? - MAD?, M? + MAD?] 
is considered, where MAD? = mediarii(\ri — M?\) is the 
median absolute deviation. The assumption is that the DRs 
corresponding to the inlier matches are constrained in a small 
range, which resembles the real scale between the clouds. The 
final scale ratio is obtained by averaging the DRs in the inl? 
range. 

Fig. 3 shows the performance of the proposed scale recov­
ery strategy: a reference cloud with 5000 points is considered, 
with varying scale factor (sf), and outlier matches percentage. 
As can be seen, the scale recovery is very accurate for reason­
able outlier percentage below 25%. 
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Fig. 3. Performance of the scale recovery strategy in terms of 
estimation error vs outlier percentage. 

3.3. Model integration: 6-DoF alignment and refinement 

Once the scale ratio is recovered, a cloud P'v scaled version 
of Pv is obtained in the same coordinate frame as Pm. The 
goal is now to estimate the 6-DoF roto-translation to align 
P'v and Pm. Due to the presence of outlier matches, singular 
value decomposition is not an option to estimate that transfor­
mation; instead, a RANSAC-based routine has been chosen 
allowing a robust estimation. A new registered point cloud 
P" is obtained by applying the candidate transformation to 
P'v. Finally, the base model Pm and the registered cloud can 
be merged into the final model F. Due to small alignment er­
rors, some refinements are needed in the overlapping areas. In 
fact, while significant information is added to the final cloud 
F (i.e. all non-matching samples), duplicate points do appear. 
In order to avoid such duplicate points and improve matching 
robustness, matching points are relocated by averaging their 
local positions, descriptors, and color information. 

In order to further consolidate the merged model, a final 
BA is applied to F, to refine the positions of cameras and 3D 
points, obtaining the final refined cloud F', which can be used 
as base model for future registrations. 

4. RESULTS 

In order to quantitatively assess the performance of our solu­
tion, we carried out a number of experiments comparing the 
time complexity and the final model density of our proposal 
with those of two state-of-the art SfM solutions. Due to their 
popularity, Bundler [1] and VisualSfM (VSfM) [4] have been 
selected as reference, however, the presented video integra­
tion method can be applied to any other SfM framework. 

We collected a dataset of images and videos of the 
Rathaus building in Marienplatz, Munich. The set includes 
492 pictures harvested from the web and 7 video streams 
acquired with a mobile phone (Huawei P6). The image set is 
used to create the base model, while the video streams serve 
as input for the model update. 
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Fig. 4. a) Base point cloud model, and b) Bundler's final model vs. c) ours, in which colors map different videos. 

Bundler VSfM 
Dataset (# images) Method 

Ours 
Bundler 
Ours 

Bundler 
Ours 

Bundler 
Ours 

Bundler 
Ours 

Bundler 
Ours 

Bundler 
Ours 

Bundler 

Total points 

248032 
180646 
263115 
253718 
280334 
271005 
292886 
274119 
298925 
252887 
327910 
305114 
372209 
336951 

Time (s) 

6935 (130) 
9918 

7392 (126) 
10845 

7917 (127) 
10416 

8204 (127) 
10623 

8563 (134) 
12246 

9622 (212) 
15745 

12285 (267) 
36068 

Time gain Method 

Ours 
VSfM 
Ours 
VSfM 
Ours 
VSfM 
Ours 
VSfM 
Ours 
VSfM 
Ours 
VSfM 
Ours 
VSfM 

Total points 

116099 
110111 
128881 
121294 
139836 
131497 
148772 
141412 
153263 
143430 
165276 
156636 
191871 
179443 

Time (s) 

2186(18) 
2803 

2354(13) 
2642 

2632 (8) 
3992 

2700 (8) 
4014 

3016 (24) 
3781 

3541(11) 
5011 

5369 (23) 
7123 

Time gain 

(A) Base model (492) +facadeL (66) 

(B) A (558) +facadeR (64) 

(C) B (622) + glock (73) 

(D) C (695) + tower (49) 

(E) D (744) + clock (56) 

(F)E (800) + dragon (131) 

(G)F (931) + marien (319) 

30.08% 

31.84% 

23.99% 

22.77% 

30.08% 

38.89% 

65.94% 

22.01% 

10.90% 

34.07% 

32.74% 

20.23% 

29.34% 

24.62% 

Table 1. Computational efficiency of our technique vs. both Bundler and VSfM. All the experiments have been run on a 
machine equipped with 2 x 2.7GHz Xeon CPUs, 8 cores/CPU and 128GB of RAM. 

The comparison against the selected baselines [1] [4] is 
carried out considering the base model as the reference to 
be incrementally updated with the local model information. 
Since neither Bundler nor VSfM can add information to the 
model, they run the entire SfM pipeline with an increasingly 
enlarged set of input images. The simulations show how our 
proposal allows an efficient processing of the local model and 
point cloud registration, significantly reducing the computa­
tion time while preserving the model accuracy and increasing 
point density. 

In Fig. 4, the base model, and the models obtained by 
Bundler and by our approach are rendered side by side for 
subjective comparison. Table 1 reports relevant details: the 
size of the image database, the total number of points of the 
final model, the computation time required by the different 
approaches and the time gain using our method. The time in 
brackets is the one required for the alignment of the two point 
clouds, assuming they are pre-calculated. As can be seen, 
our proposal significantly reduces the time, although we have 
added the time required to build the base and local models to 
the one spent for the point cloud registration. However, in a 

more realistic scenario, where the base model can be assumed 
to be available, and a video sequence is provided for the up­
date, the effective computation load would be only function 
of the video length, and the registration time. The time gain 
in this more realistic scenario is 4-60X faster than the selected 
baselines (75-98% gain), depending on the length of the video 
stream and the number of correspondences. 

5. CONCLUSIONS 

We have proposed a method to integrate information from 
video sequences into reference 3D point clouds. First, a 
global, sparse, base model is built thanks to a SfM engine. 
Then, the videos are used to generate several local, denser 3D 
models. The scale between local and base model is recovered 
through statistical analysis of the distance ratio of matching 
samples, and then the local model is registered to the base 
one exploiting the local information of the images. The test­
ing phase has focused on comparing the time complexity 
of the proposed approach against two state-of-the-art SfM 
methods [1] [4], showing the effectiveness of our solution. 
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