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ABSTRACT

In this work, we present an extended study of image rep-
resentations for fine-grained classification with respect to
image resolution. Understudied in literature, this parameter
yet presents many practical and theoretical interests, e.g. in
embedded systems where restricted computational resources
prevent treating high-resolution images. It is thus interesting
to figure out which representation provides the best results in
this particular context. On this purpose, we evaluate Fisher
Vectors and deep representations on two significant fine-
grained oriented datasets: FGVC Aircraft [1] and PPMI [2].
We also introduce LR-CNN, a deep structure designed for
classification of low-resolution images with strong semantic
content. This net provides rich compact features and outper-
forms both pre-trained deep features and Fisher Vectors.

Index Terms— Fisher vectors, Convolutional neural net-
works, Fine-grained classification, Image recognition

1. INTRODUCTION

Image classification received a lot of interest from Computer
Vision and Machine Learning communities in the recent
years [3]. Fine-grained classification is a challenging ap-
plication, consisting in distinguishing very similar classes.
Many fine-grained oriented datasets have been proposed to
treat this task, e.g. FGVC Aircraft [1], Caltech-UCSD Birds-
200-2011 [4], 102 Category Flower Dataset [5], PPMI [2].
In [2], one must determine whether persons are playing or
merely holding an instrument. As shown in figure 1, this task
requires spotting and recognizing very small discriminating
details.

Many methods have recently emerged to address the fine-
grained classification problem. Fisher Vectors [6], extending
Bag of Visual Words [7, 8, 9, 10, 11], have achieved particu-
larly good results on multiple image classification tasks [12].
Recently, deep networks [13, 14, 15] and more specifically
Convolutional Neural Networks have also obtained outstand-
ing performances on several large scale image classification
datasets [16, 17, 18]. Due to their complex structure, these
nets usually have several dozen million weights: such com-
plex architectures cannot be properly trained on mid-scale
datasets. However, recently, they have successfully been used

(a) Playing the harp  (b) Holding the harp

Fig. 1. Examples of PPMI images. Discriminating between
people playing the instrument and people holding the instru-
ment is a difficult task, even for a human eye.

in a transfer fashion: the weights are learned on a very large
external dataset (e.g. ImageNet [19]), then the net is used un-
changed as a deep feature extractor on the target dataset. Such
pre-trained deep features have proven very efficient as off-the-
shelf features on a few mid-scale datasets [20]. Smaller nets
have also been designed so as to be learned on lesser datasets
[21], yet they have not been adapted to fine-grained tasks.

Our first contribution is to analyze the impact of a specific
parameter on Fisher Vector and deep features: input image
resolution. In a context of embedded systems, image acquisi-
tion process and computational resources can be very limited,
thus only low-resolution images are available. Due to the sys-
tem’s movements, objects can moreover be seen at different
sizes, which leads to consider feature robustness regarding a
wide range of image resolutions. To address these practical
issues, our second contribution is to propose a deep struc-
ture designed for classifying small images in a fine-grained
context, based on the deep network recently designed for Im-
ageNet classification [16, 17, 22]. For this comparative study
and the evaluation of our method, we provide very detailed
experiments on two major fine-grained oriented datasets,
FGVCAircraft [1] and PPMI [2], comprising images of quite
high resolutions. To highlight the impact of the resolution pa-
rameter, we generate a batch of datasets in which all images
have the same resolution.

2. IMAGE REPRESENTATIONS

In this section, we first present the feature types introduced
above, then we discuss the issue of the image resolution.



FV features. Introduced by Perronnin et al. [6], Fisher Vec-
tor (FV) is a major Computer Vision representation which
has recently proven its efficiency in fine-grained contexts by
winning the Fine-Grained classification challenge 2013 [12].
This representation is based on three main steps. First, local
features are extracted on all training images. In this work, we
consider the well-known SIFT descriptor introduced by [23].
The distribution of these features is then estimated through
a Gaussian Mixture Model (GMM). Finally, for each image,
local features are encoded with respect to the first and second
order statistics of this GMM and aggregated. This resulting
aggregated vector is the image representation. In [24], Per-
ronnin et al. proposed two major steps to boost FV perfor-
mances. Following their work, FV z are power normalized
by applying the function sign(z;) X |z;|* to each element z;,
then the whole FV is further L2-normalized.

CNN features. A convolutional neural network (CNN)
is a succession of convolutional layers followed by fully-
connected layers. Each layer takes as input the output values
of the previous layer. Convolutional layers can be thought of
as a batch of filters applied on the image at different scales,
whereas fully-connected layers compute linear combinations
of all output values of the previous layer. For our study, we
use CNN-M network [17], which contains five convolutional
blocks and three fully-connected layers. This network was
trained on ILSVRC12 training set, which contains 1.2 million
images belonging to 1,000 classes [19]. In our experiments,
we use a part of this pre-trained network as a deep feature
extractor, similarly to what has been tested on Caltech-UCSD
Birds [20] or PASCALVOC [17]. More precisely, we extract
deep features at two specific levels of the network: (a) after
the first fully-connected layer and (b) after the last fully-
connected layer (both features have size 4096).

Resolution adaptation for feature computation. To show
the influence of resolution on the performances of these im-
age representations, we focus on seven specific resolutions
ranging from 200 x 200 to 10 x 10 pixels. On this purpose,
we generate, for each dataset [1, 2], 7 derived datasets, each of
them containing all images of the original dataset downsized
to a s x s pixel image. These datasets are then considered
as independent classification problems: for each resolution s,
classifiers are trained on images of size s X s and tested on
test images of size s X s. Both feature types presented above
are however very sensitive to these resolution changes. Due
to its fixed structure, CNN-M requires a fixed 224 x 224 in-
put image size. Besides, small images do not enable comput-
ing enough SIFT, which highly affects FV computation. To
address both these issues, small s X s images are thus mag-
nified using a nearest-neighbour interpolation. This process
provides images with a large enough number of pixels with-
out altering the image quality obtained for small resolution.

3. LR-CNN

Standard deep networks used for large-scale image datasets
such as Krizhevsky-like structures [16] have achieved out-
standing performances on fine-grained classification of high
resolution images, yet they contain at least 60 million weights;
such a complex system cannot be learned properly on a
mid-scale dataset containing a few thousand training im-
ages. To address this issue, we present LR-CNN, a deep
structure adapted to low-resolution image classification in a
fine-grained context.

Architecture. Based on CNN-M structure, this architecture is
a version of structures adapted to fine-grained classification of
high resolution images scaled to suit a low resolution context.
On this purpose, we design a deep structure computing very
rich image representations through three convolutional lay-
ers and two fully-connected layers. All convolutional blocks
are composed of 64 filters, providing a large number of im-
age descriptors. Filters of the first convolutional layer have
size 5 x 5, computing convolution at a global scale in the in-
put image. The responses to these filters are then cross-map
normalized. A max pooling step summarizes local informa-
tion in each response map. We introduce overlap in these
layers, providing a richer pooling step. The second convolu-
tional layer contains 64 filters of size 5 x 5. Max-pooling is
performed the same way as in convl. The last convolutional
layer comprises filters of size 3 x 3: this filter size appears to
be significant since it determines which proportion of the in-
put image is addressed. The number and size of the filters are
determined so that the network covers a proportion of the in-
put image which enables distinguishing small discriminating
details. These convolutional layers are followed by a fully-
connected layer, which computes a linear combination of all
outputs of third convolutional layer. A final fully-connected
layer computes the score of the input image for each class.
Non-linearities are introduced by applying function Rectified
Linear Units (ReLU) f(z) = max(0, ) to the responses of
filters from all layers. The outputs of this network are finally
normalized through a softmax step, computed as follows:
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where zy, is the score of filter k from previous layer and yy
is the corresponding output. This structure is summarized in
table 1.

Training. Although backpropagation is a standard training
framework, this algorithm contains many details that need to
be controlled. The weights of the different layers in the CNN
are learned by iteratively correcting each weight with respect

to its contribution to the output loss. More specifically, at each
(t)

iteration ¢ of this backpropagation algorithm, the weight w; ;}



Block Convl Conv2 Conv3 Fc4 Fc5
64 filters 5 x 5, st.1 64 filters 5 x 5, st.1 64 filters 3 x 3, st.1 output size 128  output size 100
Details | ReLLU, contrast norm ReLU ReLU ReLU softmax
max. pool [3 3], st. 2 max. pool [3 3], st. 2 max. pool [3 3], st. 2

Table 1. LR-CNN structure, designed for small image classification in a fine-grained context.

is updated of
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where m is the momentum, ¢ is the learning rate, A is the
weight decay and 91(2@ is the gradient of the loss function with
respect to the weight w;;;, at time ¢. Through equation 2, it
can easily be seen that momentum and weight decay regulate
some inertia of the weight at previous time, and learning rate
regulates how much the weight is updated with respect to the
loss gradient. In our case, we use a log-loss cost function.

Some layers (usually the first fully-connected layer) may
have an important number of weights. To prevent the system
from overfitting, dropout [16] is used; this technique freezes
some of the weights at time ¢ with probability p, which
lightens the network and thus prevents overfitting. Other
techniques like Dropconnect [25] have emerged, proposing
to drop connections instead of weights, however dropout
strategies lead to better results on the studied benchmarks.

Data augmentation further helps preventing overfitting.
This consists in multiplying the number of training images by
applying to them some transformations which leave the label
unchanged. In our case, images are reduced to 37 x 37 pixels
in which five 32 x 32 crops are sampled from the corners and
the center; each crop is flipped around the vertical axis.

4. EXPERIMENTS

We test FV and CNN features on the very challenging task
of fine-grained classification, using two significant datasets.
FGVC Aircraft [1] comprises 100 classes of airplane variants,
each containing 100 aircraft images. PPMI [2] is a 4800 im-
age dataset of persons with musical instruments. Each image
contains a person and an instrument out of a list of 12. The
aim is to determine whether the person is playing the instru-
ment or merely holding it. For our experiments, we use the
on-line available 258 x 258 normalized images.

Setups. For FV features, on both datasets, we extract multi-
scale dense gray-level SIFT [23]. We use a 64 gaussians
GMM and 1 x 142 x 244 x 4 spatial pyramids. The result-
ing FV feature of an image has a size 344064. Following [24],
FV are L2-normalized and power normalized with o = 0.5.
Fisher Vectors are implemented using VLFeat library [26].
For this study, we use the existing deep network CNN-M
from MatConvNet library [27] trained on ImageNet dataset
[19]. To show the importance of the choice of the deep fea-
ture, we extract features by using the output of different layers

of the network: the output of the second fully-connected layer
(CNNM19), for this is a very commonly used baseline in deep
feature analysis, and the output of the first fully-connected
layer (CNNM16). These features are then L.2-normalized.

To avoid any misinterpretation due to scaling issues, we
choose to use linear classifiers. We use Crammer and Singer
optimization on the multi-class FGVC Aircraft classification
task, and a standard L2-regularized L1-loss linear SVM on
the binary PPMI classification task. Both classifiers are im-
plemented using Liblinear library [28].

FV vs CNN on varying resolution. In figures 2 and 3, we
present classification performances vs input image size for
several resolutions sampled from 200 x 200 to 10 x 10 pixels.
For FGVCAircraft, the performances range between 53.3%
and 19.2% for FV, 46.4% to 15.8% for CNNM19, 54.6% and
17.3% for CNNM16. The performances on PPMI vary from
86.0% to 70.9% for FV, from 87.4% to 69.0% for CNNM19,
from 89.7% to 70.9% for CNNM16.

We now focus on the impact of resolution on classifica-
tion performances. It is noticeable that each baseline has the
same bimodal behaviour on both datasets regarding resolu-
tion diminution. As long as the resolution remains quite high,
performances plateau: for FV, the performance loss on reso-
lutions 200 x 200 to 100 x 100 is 0.7% on FGVC Aircraft
and 0.4% on PPMI. Then, for all resolutions lower than these
critical values, the methods seem to get much more sensi-
tive to the image resolution: the FV performance gap between
resolutions 50 x 50 to 20 x 20 is 14.2% on FGVC Aircraft
and 4.2% on PPMI. MatConvNet deep features also show the
same behaviour: on FGVC Aircraft, CNNM19 features per-
formances drop of 3.3% from 200 x 200 to 100 x 100 and
of 20.2% from 100 x 100 to 20 x 20. To illustrate this be-
haviour, we show in figure 4 images of two Airbus variants
at different resolutions. At resolution 200 x 200, the variant
(A380) can easily be read on the fine and the fuselage of the
first airplane. One can even see that the A380 has two floors,
while the A330-200 only has one. When decreasing image
resolution, at 50 x 50 pixels, the variant is no longer readable.
However, it can still be guessed that the A380 has two floors.
Finally, critical resolution (20 x 20 pixels) makes it impossible
to distinguish either of these discriminating details.

We also show that FV reaches the best performances
on low-resolution images, although relative performances of
FV and CNN features strongly depend on the CNN layer

!Performances can be improved using external data and additional infor-
mation, but these processes are out of the scope of this paper.



Accuracy vs image resolution — FGVG Aircraft (variants)
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Fig. 2. Performances using FV and CNN-M features vs im-
age resolution on FGVC Aircraft

===
s

Fig. 4. Example of two Airbus airplane images (top A380,
bottom A330-200) at resolutions 200 x 200 (left), 50 x 50
(middle) and 20 x 20 (right). Resolution degradation occludes
the discriminating details that enable distinguishing classes.

we choose as the image representation. Indeed, for features
extracted on top of the fully-connected part (CNNM16),
performances are competitive with those of FV at several
resolutions, or even better (e.g. on PPMI for resolutions
> 100 x 100). However, when extracting features at a
deepest level of the network (such as CNNM19), classifica-
tion performances drop. This behaviour, observed on both
datasets, tends to support the conclusion that the last layers of
a network are more specific to the learning dataset, whereas
the shallowest layers offer a more generic description of an
input image, as shown in [29]. It could however be interesting
to adapt the pre-trained weights of CNNM by fine-tuning the
network on the targeted tasks.

LR-CNN results. For initialization, the weights are drawn
from a gaussian distribution of mean 0 and standard deviation
0.01, and a 50% dropout is performed after the first fully-
connected layer. The weight decay is set at 0.01 and momen-
tum value is 0.9. The learning rate is set at 10~2, then gradu-
ally decreased down to 10~° when the training error plateaus.
To fairly compare all features quality, we use this network as
a feature extractor: the output of conv3 is the image feature
(size 2304), and a linear SVM is used for classification.

mMAP vs image resolution — PPMI (12 binary classif tasks)
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Fig. 3. Performances using FV and CNN-M features vs im-
age resolution on PPMI

In this work, we propose an architecture optimized for
low resolution image classification in a fine-grained context.”
This model obtains a 44.8% accuracy on FGVCAircraft,
outperforming FV (42.4%) as well as pre-trained deep fea-
tures CNNM16 (32.7%) and CNNM19 (27.2%). We show
that LR-CNN provides features capturing small details, thus
bringing a significant gain of performance over pre-trained
networks on fine-grained classification of low-resolution im-
ages. Our network benefits from learning “best practices™
such as dropout [16] as well as an advanced parametrization.
Filter size appears to be an important parameter, since per-
formances drop of 1.1% when upsizing filters of conv3 to
5 x 5. Having two fully-connected layers is another signifi-
cant improvement: accuracy drops of 4.3% when no hidden
fully-connected layer exists. LR-CNN obtains thus better
results than FV while providing a much smaller representa-
tion: while FV requires over 300k-dimensional features to
describe a 1k pixel image, LR-CNN only requires 2k dimen-
sions. Adapted from the deep structures designed for high
resolution images, this network has the capacity to compute
rich and compact image representations.

5. CONCLUSION

We evaluate two very competitive features (Fisher-based and
CNN-based) on a fine-grained classification task with respect
to the dataset resolution. We highlight a bimodal behaviour:
for mid- to high-resolutions (> 100 x 100 pixels) perfor-
mances remain quite stable, then drop when reaching a crit-
ical resolution (< 50 x 50 pixels). We also show the pre-
dominance of FV over CNN features on low resolution image
datasets in a fine-grained context. Finally, we introduce LR-
CNN, a CNN structure optimized for classification of fine-
grained complex low-resolution images, which outperforms
pretrained CNN and FV features while proposing much more
compact features.

21t should be noted that due to the fixed structure of CNNs, a particular
strategy is required to test LR-CNN on other resolutions, and the resulting
performances would not be comparable.
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