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ABSTRACT

Diffusion methods have proven their efficiency for tasks such

as semi-supervised segmentation. The introduction of patches

as a part of their speed function allows to deal with textured

images. However, the computational burden with such vari-

ants stays too important for low-level tasks. In this paper,

we propose a multivalued color-based potential function that

partly alleviates this flaw. It allows to efficiently perform

semi-supervised segmentation of natural and textured images.

Index Terms— Diffusion, Gaussian Mixture Models,

Semi-supervised segmentation, Textured images

1. INTRODUCTION

Diffusion based approaches have been widely used for image

segmentation purposes [3, 4, 5, 1, 7] (to cite a few). Allow-

ing a user to label parts of an image leads to a semi-supervised

segmentation problem, for which most of label diffusion tech-

niques can be used. Apart from their different formulations,

their results strongly differ with the amount of manual inter-

actions needed to get a good segmentation result.

The zebra teaser images show that sparsely distributed

seeds (first image) are clearly insufficient even with a state-

of-the-art method such as [1] (second image). Indeed [1]

requires far more seeds to correctly segment the zebra, and

that is the case for most of diffusion-based segmentation ap-

proaches: the quality of the result heavily depends on the na-

ture of the image and on the amount of user’s interactions.

In this paper we propose a multivalued diffusion frame-

work whose goal is to reduce the amount of user interactions

to get a satisfactory result while keeping its complexity low.

The proposed method1 relies on the resolution of an

1code available at sites.google.com/site/

pierrebuyssens/code/multivalued-diffusion

Eikonal equation that computes for each pixel p of an image

I the distance U(x) to its closest seed pixel. It then defines a

partition of the image leading to the segmentation result.

The proposed method extends our previous work [2] to

handle a multivalued diffusion behavior. The considered

equation is:

{

|∇U(x)| = P (u, Lt) ∀p ∈ I
U(x) = φ(x) ∀x ∈ L0

(1)

where P is the positive potential function, φ an initialization

function, Lt the set of labeled pixels at the tth iteration, and

L0 the set of initial labeled pixels.

Contrary to classical gradient-based potential function,

where P is fully known at the beginning of the diffusion, we

propose the use of a dynamic potential computed according

to statistics of the regions while they grow.

To efficiently deal with multivalued objects, a region is no

more modeled with its mean as in [2], but with Gaussian Mix-

ture Models (GMM) such that it may be composed of very

different features. On the zebra teaser image for instance, the

initial seed depicted in red is roughly composed of white and

black components. The region (front) can then grow freely

along these two colors and this results in a correct segmen-

tation (right image). Note that such GMMs have previously

been used within the Graph cut optimization framework [8].

However our proposed approach has a much lower complex-

ity.

2. PROPOSED MULTIVALUED DIFFUSION

2.1. Notations

In the following, a pixel p consists in a couple of coordi-

nates (xp, yp) and an associated dimensional feature vector

Xp ∈ R
d (d = 3 for color images). A region Ri is a



set of pixels enclosed within a front Γi = {q ∈ Ri|∃p /∈
Ri and p neighbor of q}. The Gaussian Mixture Model as-

sociated to Ri is composed of K Gaussians and is noted

Πi =
∑K

k=1 πkG
i
k where Gi

k is the kth Gaussian component

of the mixture and πk its mixture coefficient. We assume

that the mixture coefficients for a given GMM sum to 1 (i.e.,
∑K

k=1 πk = 1). In the following, we detail the algorithm con-

sidering only one particular GMM. So, for clarity purposes

we drop the index i. A given Gaussian Gk consists in a mean

vector µk, a full d× d covariance matrixΣk, and the number

of samples nk associated to it.

2.2. Gaussian Mixture-based potential function

In this paper, we propose a dynamic potential function that

depends on statistics of the region begin formed. Assuming

that a Gaussian Mixture Model Π composed of K Gaussians

is associated to a given region R

Π =
K
∑

k=1

πkGk (2)

with

Gk(X) =
1

(2π)
d

2 |Σk|
1

2

e(−
1

2
(X−µ

k
)TΣ−1(X−µ

k
)). (3)

Then the potential P (p|R) of a pixel p ∈ Γ is computed as

P (p|R) =
1

γ(p|R)
(4)

where
γ(p|R) = argmaxk(πkGk(Xp)). (5)

Here, the γ function can be seen as a speed function of

the front Γ for a given pixel p. Equation (5) states that only

the Gaussian that best fits Xp is associated to p (hard assign-

ment2). At this step, one can note that a Gaussian component

Gk that is under represented within the mixture (i.e., πk ≪ 1)
would produce low speed values πkGk(·). The front diffusion
through such a Gaussian is then not fostered.

2.3. Algorithm detail

Initialization : Given a set of initial labeled pixels, the algo-

rithm starts by modeling each set of pixels that share the same

label by a Gaussian Mixture Model. Each GMM is initially

composed ofK components (K = 10 in all our experiments).

For a given GMM, each mean µk is estimated via k-means

and a sole Gaussian is assigned to each initial labeled pixel.

Covariance matrices Σk are then computed with respect to

this assignment. Finally, the mixture coefficients are simply

computed as the probability for a pixel to belong to a given

Gaussian : πk = nk/
∑K

t=1 nt.

2Soft assignment of probabilities would be preferable to be used. How-

ever the practical benefits of such assignments turn out to be neglectible re-

garding the additional computational cost.

Note that irrelevant Gaussians (those that contain no pix-

els, n = 0) are automatically discarded. An initial GMM can

then be composed of less than K components.

Diffusion : The diffusion process is carried out via the Fast

Marching algorithm due to its efficiency [9]. The potential

of each pixel p ∈ Γi, i ∈ {1, . . . , N} is computed (Eq. (4)).

Within the diffusion process, each time a pixel p is labeled,

the adjoining Gaussian G (the one that has maximized πkGk,

see Eq. (5)) is updated with Xp. To avoid recomputing from

scratch the mean vector µ and the covariance matrix Σ of G,

which can be very time consuming, we perform an online up-

date of G. This non-trivial update procedure of a given Gaus-

sian G with a feature vector X is detailed in the algorithm 1.

Note that the mixture coefficients of all the Gaussians of the

GMM are updated too, since we have
∑K

k=1 πk = 1. The

algorithm terminates when all the pixels have been labeled.

Algorithm 1 Online update of a Gaussian G by a vector X

Input: X, G
Output: updated G
Σ← Σ× (n− 1)
n← n+ 1
∆← X− µ

{Update mean µ}
µ← µ+∆/n
{Update covariance matrix Σ}
Λ← X− µ

Σi,i ← Σi,i +∆i ×Λi

Σi,j ← Σi,j +Λi ×Λj if i 6= j
Σ← Σ/(n− 1)
{Update mixture coefficients πk, ∀ Gk}

πk ← nk/
∑K

t=1 nt

2.4. Complexity analysis

Complexity of the diffusion relies essentially on the com-

plexity of the Fast Marching algorithm and on the number

of Gaussians. With an appropriate heap for sorting the pix-

els according to their potential, the complexity of the Fast

Marching algorithm depends on the number of pixels D and

is roughly O(D log(D)). Also, computing the potential of a

pixel p involves K estimations of πkGk(Xp) (Eq. (5)). The
overall complexity of the proposed algorithm is then roughly

O(KD log(D)).

Despite this theoretical complexity, the proposed algo-

rithm may be very fast in practice, since the computation of

γ(p|R) (Eq. (5)) can easily be parallelized. Moreover, us-

ing different data structures (and additional storage), some

O(D) implementations of the Fast Marching algorithm have

been proposed [10, 11]. With a smart implementation, the

complexity of the proposed algorithm can then be reduced to

O(D). This linear complexity is a strong advantage towards

the use of our approach.



3. RESULTS

3.1. Multi label semi-supervised segmentation

In this section, we compare segmentation results of our ap-

proach with state-of-the-art methods: a gradient-based diffu-

sion framework [12], the Eikonal Region Growing Cluster-

ing algorithm3 [2], and the Power Watershed algorithm4 [1].

While the gradient-based diffusion framework [12] solves an

Eikonal equation with a gradient-based potential function, the

power watershed [1] uses a variant of the watershed algorithm

on graph. Finally, our previous work [2] solves an Eikonal

equation with a potential function that depends solely on the

mean color of the regions.

The comparative results on the church image (left column

of Fig. 1) show many bad labeling for state-of-the-art meth-

ods, especially on the front of the building or on the roof. On

the landscape image (middle column), similar failures can be

observed, especially on stones and grass. Finally, the segmen-

tation results on the Oscar image (right column) exhibits bad

labeling with methods of [12] and [2]. The power watershed

performs well on this image.

Despite sparsely and coarsely distributed initial labels, our

GMM based diffusion approach provides equal or better qual-

ity visual results than state-of-the-art methods.

3.2. Adding texture informations

The proposed formulation (see Sec. 2) is not restricted to

color feature vectors. In this section, we provide additional

segmentation results on texture images by adding simple tex-

ture information to the model. Introduced in [13], structure

tensors are a natural extension of gradient motion for multi-

valued images. They efficiently encode both the local image

color variation and their directions. Traditionnally, for two-

dimensional RGB images, structure tensors reduce to 2 × 2
matrices defined as follows:

S =
∑

c∈{R,G,B}

−−→
∇Ic.

−−→
∇Ic

T

= λ1.u.u
T + λ2.v.v

T with λ1 > λ2

with λ{1,2} the eigenvalues of S and u, v the eigenvectors

associated to λ1 and λ2 respectively. The eigenvector associ-

ated to the largest eigenvalue is oriented along the major im-

age change direction while the one associated to the smaller

eigenvalue is oriented along its orthogonal.

In the following, we use the largest eigenvalue and its as-

sociated eigenvector as additional components in our model.

The feature vector associated to each pixel consists then in

a 6-dimensional vector encoding both color and local texture

informations.

3sites.google.com/site/pierrebuyssens/code/ergc
4powerwatershed.sourceforge.net

Except for these augmented inputs, the rest of the algo-

rithm is kept unchanged. Figure 2 provides comparisons of

state-of-the-art algorithms with ours on synthetic textured im-

ages. Despite sparsely and coarsely distributed initial seeds,

the proposed approach efficiently discriminates different ori-

entations of the same texture (first column), similar patterns

with different luminance (second column), and more complex

texture patterns (third column). All other methods are not

suited for such complex images.

Fig. 2: Semi-supervised segmentation of textured images.

From top to bottom: initial seeds, segmentation results with

[2], [1], and our approach.

4. CONCLUSION AND FUTURE WORK

This paper presents a multivariate diffusion framework for

semi-supervised segmentation. Based on a diffusion from on

a set of initial seeds, the proposed approach allows to seg-

ment complex objects that are modeled with Gaussian Mix-

ture Models. We also demonstrate the flexibility of our ap-

proach by adding simple structure features to the color ones

to efficiently deals with texture images. Further work will

investigate the extension to image matting such as [7], and

its adaptation on graphs for data clustering such as the recent

methods [14, 15, 16].



Fig. 1: Semi-supervised segmentation comparisons on the church image (left), on the landscape image (middle), and on the

Oscar image (right). From top to bottom: initial labels, segmentation results with a gradient-based potential function [12],

segmentation results with a color and region-based potential function [2], segmentation results with power watersheds [1], and

segmentation results with the proposed Gaussian Mixture Model potential function.
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